Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units
Abstract
:1. Introduction
1.1. Maintenance Policies
Predictive Maintenance
1.2. Data Availability
1.3. Model Overview
1.4. Related Works
2. Materials and Methods
2.1. Factory Machinery
- Nominal Power:
- Airflow:
- Pressure:
- Operation Speed:
2.2. Data Analysis
- n is the amount of velocity readings,
- are each one of the velocity readings.
2.3. Model Development and Training
2.3.1. Machine Learning
2.3.2. Long Short-Term Memory
- t is the current time step, or element, of the input sequence,
- is the forget gate vector,
- is the input gate vector,
- is the temporary cell input vector,
- is the output gate vector,
- is the current element of the input sequence,
- is the previous cell’s output,
- are the weight matrices for every one-layer neural network,
- are the bias vectors for every one-layer neural network,
- is the sigmoid activation function,
- is the hyperbolic tangent activation function.
- is the previous long-term memory,
- is the updated long-term memory,
- is the cell’s main output.
2.3.3. Autoencoder
- X is the input to the AE,
- Y is the coding,
- is the reconstructed output,
- f is the encoder layer transformations,
- g is the decoder layer transformations.
2.3.4. Data Preprocessing
- X represents each feature’s values,
- is the feature’s minimum value,
- is the feature’s maximum value,
- is the minimun of the new feature range,
- is the maximum of the new feature range,
- represents the new normalized feature values.
2.3.5. Modeling and Training
- y represents the original inputs,
- represents the model’s outputted reconstructions,
- n is the number of the given samples.
- is the regularization parameter,
- m is the number of parameters in the layer,
- are the values of the layer’s parameters.
3. Results
3.1. Evaluation Threshold
3.2. Evaluation on the Left Bearing Unit
3.3. Evaluation on the Right Bearing Unit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Büchi, G.; Cugno, M.; Castagnoli, R. Smart factory performance and Industry 4.0. Technol. Forecast. Soc. Change 2020, 150, 119790. [Google Scholar] [CrossRef]
- Çınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Levitt, J. Complete Guide to Preventive and Predictive Maintenance, 2nd ed.; Industrial Press Inc: New York, NY, USA, 2011. [Google Scholar]
- Scheffer, C.; Girdhar, P. Practical Machinery Vibration Analysis and Predictive Maintenance; Elsevier: Newnes, Australia, 2004. [Google Scholar]
- Lee, J.; Kao, H.A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef]
- Zonta, T.; Da Costa, C.A.; Da Rosa Righi, R.; De Lima, M.J.; Da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Pech, M.; Vrchota, J.; Bednář, J. Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. Sensors 2021, 21, 1470. [Google Scholar] [CrossRef]
- Mobley, R.K. An Introduction to Predictive Maintenance, 2nd ed.; Butterworth-Heinemann: Amsterdam, The Netherlands; New York, NY, USA, 2002. [Google Scholar]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Serradilla, O.; Zugasti, E.; Rodriguez, J.; Zurutuza, U. Deep learning models for predictive maintenance: A survey, comparison, challenges and prospects. Appl. Intell. 2022, 52, 10934–10964. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials 2020, 13, 5755. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Azeem, N.; Khalid, A.; Jabbar, J. Vibration Energy at Damage-Based Statistical Approach to Detect Multiple Damages in Roller Bearings. Appl. Sci. 2022, 12, 8541. [Google Scholar] [CrossRef]
- Ghani, A.F.A.; Razali, M.A.A.; Zainal, Z.; Idral, F. Detection of Shaft Misalignment Using Machinery Fault Simulator (MFS). J. Adv. Res. Appl. Sci. Eng. Technol. 2016, 4, 47–57. [Google Scholar]
- Rao, M.; Zuo, M.J.; Tian, Z. A speed normalized autoencoder for rotating machinery fault detection under varying speed conditions. Mech. Syst. Signal Process. 2023, 189, 110109. [Google Scholar] [CrossRef]
- Maleki, S.; Maleki, S.; Jennings, N.R. Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering. Appl. Soft Comput. 2021, 108, 107443. [Google Scholar] [CrossRef]
- Yadav, P.; Gaur, M.; Fatima, N.; Sarwar, S. Qualitative and Quantitative Evaluation of Multivariate Time-Series Synthetic Data Generated Using MTS-TGAN: A Novel Approach. Appl. Sci. 2023, 13, 4136. [Google Scholar] [CrossRef]
- Soltana, G.; Sabetzadeh, M.; Briand, L.C. Synthetic data generation for statistical testing. In Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), Urbana, IL, USA, 30 October–3 November 2017; pp. 872–882. [Google Scholar] [CrossRef]
- Schmidl, S.; Wenig, P.; Papenbrock, T. Anomaly detection in time series: A comprehensive evaluation. Proc. VLDB Endow. 2022, 15, 1779–1797. [Google Scholar] [CrossRef]
- Zhou, C.; Paffenroth, R.C. Anomaly Detection with Robust Deep Autoencoders. In Proceedings of the Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 665–674. [Google Scholar] [CrossRef]
- Schneider, S.; Antensteiner, D.; Soukup, D.; Scheutz, M. Autoencoders—A Comparative Analysis in the Realm of Anomaly Detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 1985–1991. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Ersöz, O.Ö.; İnal, A.F.; Aktepe, A.; Türker, A.K.; Ersöz, S. A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect. Sustainability 2022, 14, 14536. [Google Scholar] [CrossRef]
- Lindemann, B.; Maschler, B.; Sahlab, N.; Weyrich, M. A survey on anomaly detection for technical systems using LSTM networks. Comput. Ind. 2021, 131, 103498. [Google Scholar] [CrossRef]
- Miele, E.S.; Bonacina, F.; Corsini, A. Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series. Energy AI 2022, 8, 100145. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chu, X.; Liu, Q.; Xue, D. Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network. Renew. Energy 2021, 172, 829–840. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, P.; Yang, X.; Hu, A.; Su, H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism. Measurement 2021, 175, 109094. [Google Scholar] [CrossRef]
- Radaideh, M.I.; Pappas, C.; Walden, J.; Lu, D.; Vidyaratne, L.; Britton, T.; Rajput, K.; Schram, M.; Cousineau, S. Time series anomaly detection in power electronics signals with recurrent and ConvLSTM autoencoders. Digital Signal Process. 2022, 130, 103704. [Google Scholar] [CrossRef]
- Radaideh, M.I.; Pappas, C.; Cousineau, S. Real electronic signal data from particle accelerator power systems for machine learning anomaly detection. Data Brief 2022, 43, 108473. [Google Scholar] [CrossRef] [PubMed]
- Hajgató, G.; Wéber, R.; Szilágyi, B.; Tóthpál, B.; Gyires-Tóth, B.; Hős, C. PredMaX: Predictive maintenance with explainable deep convolutional autoencoders. Adv. Eng. Inform. 2022, 54, 101778. [Google Scholar] [CrossRef]
- Ali, M.; Jones, M.W.; Xie, X.; Williams, M. TimeCluster: Dimension reduction applied to temporal data for visual analytics. Visual Comput. 2019, 35, 1013–1026. [Google Scholar] [CrossRef]
- Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production Systems Using LSTM Autoencoders. Sensors 2021, 21, 972. [Google Scholar] [CrossRef] [PubMed]
- Dou, T.; Clasie, B.; Depauw, N.; Shen, T.; Brett, R.; Lu, H.M.; Flanz, J.B.; Jee, K.W. A deep LSTM autoencoder-based framework for predictive maintenance of a proton radiotherapy delivery system. Artif. Intell. Med. 2022, 132, 102387. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Liang, X.; Duan, F.; Bennett, I.; Mba, D. A Sparse Autoencoder-Based Unsupervised Scheme for Pump Fault Detection and Isolation. Appl. Sci. 2020, 10, 6789. [Google Scholar] [CrossRef]
- Google Colaboratory. Available online: https://colab.research.google.com/notebooks/intro.ipynb (accessed on 16 May 2023).
- ISO 20816-3:2022; Mechanical Vibration—Measurement and Evaluation of Machine Vibration—Part 3: Industrial Machinery with a Power Rating above 15 kW and Operating Speeds between 120 r/min and 30 000 r/min. ISO: Geneva, Switzerland, 2022.
- Chollet, F. Deep Learning with Python, 2nd ed.; Manning Publications: Shelter Island, NY, USA, 2021. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]
- Ranjan, C. Understanding Deep Learning: Application in Rare Event Prediction; Connaissance Publishing: Alpharetta, GA, USA, 2020. [Google Scholar] [CrossRef]
Software | Version | Objective |
---|---|---|
Python | Main Programming Language | |
Numpy | Array Computations | |
Pandas | Data Analysis | |
Matplotlib | Graph Visualization | |
Scikit-learn | Preprocessing | |
Keras | Model Training |
Standard Operation | Encumbered Operation | ||
---|---|---|---|
V-RMS of left unit | |||
V-RMS of right unit | |||
Temperature of left unit | |||
Temperature of right unit |
Input | Output | |
---|---|---|
Encoder | ||
LSTM | ||
LSTM | ||
LSTM * | ||
Decoder | ||
RepeatVector | ||
LSTM | ||
LSTM | ||
TimeDistributed (Dense) |
Dataset | Original Dimension * | Sequential Dimension |
---|---|---|
Left—Normal State (training set) | ||
Left—Normal State (testing set) | ||
Left—Encumbered State | ||
Right—Normal State | ||
Right—Encumbered State |
Reconstructed Sample | Normal State | Encumbered State |
---|---|---|
Random V-RMS sequence of Left Bearing Unit | ||
Mean V-RMS time series of Left Bearing Unit | ||
Mean TEMPERATURE time series of Left Bearing Unit | ||
Random V-RMS sequence of Right Bearing Unit | ||
Mean V-RMS time series of Right Bearing Unit | ||
Mean TEMPERATURE time series of Right Bearing Unit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapalidou, E.; Alexandris, N.; Antoniou, E.; Vologiannidis, S.; Kalomiros, J.; Varsamis, D. Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units. Sensors 2023, 23, 6502. https://doi.org/10.3390/s23146502
Karapalidou E, Alexandris N, Antoniou E, Vologiannidis S, Kalomiros J, Varsamis D. Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units. Sensors. 2023; 23(14):6502. https://doi.org/10.3390/s23146502
Chicago/Turabian StyleKarapalidou, Elisavet, Nikolaos Alexandris, Efstathios Antoniou, Stavros Vologiannidis, John Kalomiros, and Dimitrios Varsamis. 2023. "Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units" Sensors 23, no. 14: 6502. https://doi.org/10.3390/s23146502
APA StyleKarapalidou, E., Alexandris, N., Antoniou, E., Vologiannidis, S., Kalomiros, J., & Varsamis, D. (2023). Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units. Sensors, 23(14), 6502. https://doi.org/10.3390/s23146502