Hadamard Transform Ion Mobility Spectrometry Based on Matrix Encoding Modulation
Abstract
:1. Introduction
2. Principle and Applicability of HT-IMS
3. Experiment
3.1. Instruments
3.2. Data Acquisition and Processing
3.3. Reagents
4. Discussion
4.1. The Measurement of Reactant Ions Using SA-IMS, HT-IMS and Sylvester-HT-IMS
4.2. The Measurement of Product Ions Using SA-IMS, HT-IMS and Sylvester-HT-IMS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ewing, R.G.; Atkinson, D.A.; Eiceman, G.; Ewing, G. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Asbury, G.R.; Klasmeier, J.; Hill Jr, H.H. Analysis of explosives using electrospray ionization/ion mobility spectrometry (ESI/IMS). Talanta 2000, 50, 1291–1298. [Google Scholar] [CrossRef]
- Fuche, C.; Deseille, J. Ion mobility spectrometry: A tool to detect narcotics and explosives. Actual. Chim. 2010, 91–95. [Google Scholar]
- Keller, T.; Miki, A.; Regenscheit, P.; Dirnhofer, R.; Schneider, A.; Tsuchihashi, H. Detection of designer drugs in human hair by ion mobility spectrometry (IMS). Forensic Sci. Int. 1998, 94, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Roscioli, K.M.; Tufariello, J.A.; Zhang, X.; Li, S.X.; Goetz, G.H.; Cheng, G.; Siems, W.F.; Hill, H.H. Desorption electrospray ionization (DESI) with atmospheric pressure ion mobility spectrometry for drug detection. Analyst 2014, 139, 1740–1750. [Google Scholar] [CrossRef]
- Steiner, W.E.; Clowers, B.H.; Matz, L.M.; Siems, W.F.; Hill, H.H. Rapid screening of aqueous chemical warfare agent degradation products: Ambient pressure ion mobility mass spectrometry. Anal. Chem. 2002, 74, 4343–4352. [Google Scholar] [CrossRef]
- Yang, L.; Han, Q.; Cao, S.; Yang, J.; Yang, J.; Ding, M. Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples. Sensors 2014, 14, 20963–20974. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Li, H. Pushing the resolving power of tyndall–powell gate ion mobility spectrometry over 100 with no sensitivity loss for multiple ion species. Anal. Chem. 2017, 89, 13398–13404. [Google Scholar] [CrossRef]
- Kirk, A.T.; Grube, D.; Kobelt, T.; Wendt, C.; Zimmermann, S. High-resolution high kinetic energy ion mobility spectrometer based on a low-discrimination tristate ion shutter. Anal. Chem. 2018, 90, 5603–5611. [Google Scholar] [CrossRef]
- Liang, P.; Li, Y.; Jiang, D.; Wei, Y. Signal processing in portable ion mobility spectroscopy. Procedia Eng. 2010, 7, 463–472. [Google Scholar] [CrossRef]
- Clowers, B.H.; Siems, W.F.; Hill, H.H.; Massick, S.M. Hadamard transform ion mobility spectrometry. Anal. Chem. 2006, 78, 44–51. [Google Scholar] [CrossRef]
- Szumlas, A.W.; Ray, S.J.; Hieftje, G.M. Hadamard transform ion mobility spectrometry. Anal. Chem. 2006, 78, 4474–4481. [Google Scholar] [CrossRef]
- MacWilliams, F.J.; Sloane, N.J. Pseudo-random sequences and arrays. Proc. IEEE 1976, 64, 1715–1729. [Google Scholar] [CrossRef]
- Hong, Y.; Niu, W.; Gao, H.; Xia, L.; Huang, C.; Shen, C.; Jiang, H.; Chu, Y. Rapid identification of false peaks in the spectrum of Hadamard transform ion mobility spectrometry with inverse gating technique. RSC Adv. 2015, 5, 56103–56109. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, C.; Liu, S.; Xia, L.; Shen, C.; Chu, Y. Normal-inverse bimodule operation Hadamard transform ion mobility spectrometry. Anal. Chim. Acta 2018, 1029, 44–49. [Google Scholar] [CrossRef]
- Tabrizchi, M.; Jazan, E. Inverse ion mobility spectrometry. Anal. Chem. 2010, 82, 746–750. [Google Scholar] [CrossRef]
- Davis, A.L.; Clowers, B.H. Leveraging spectral sparsity to realize enhanced separation of gas-phase ion populations. Int. J. Mass Spectrom. 2018, 427, 141–150. [Google Scholar] [CrossRef]
- Kwasnik, M.; Caramore, J.; Fernandez, F.M. Digitally-multiplexed nanoelectrospray ionization atmospheric pressure drift tube ion mobility spectrometry. Anal. Chem. 2009, 81, 1587–1594. [Google Scholar] [CrossRef]
- Naylor, C.N.; Clowers, B.H.; Schlottmann, F.; Solle, N.; Zimmermann, S. Implementation of an Open-Source Multiplexing Ion Gate Control for High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS). J. Am. Soc. Mass Spectrom. 2023, 34, 1283–1294. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, S.; Huang, C.; Xia, L.; Shen, C.; Jiang, H.; Chu, Y. Simultaneous Improvement of Resolving Power and Signal-to-Noise Ratio Using a Modified Hadamard Transform-Inverse Ion Mobility Spectrometry Technique. J. Am. Chem. Soc. 2017, 28, 2500–2507. [Google Scholar] [CrossRef]
- Clowers, B.H.; Belov, M.E.; Prior, D.C.; Danielson, W.F.; Ibrahim, Y.; Smith, R.D. Pseudorandom sequence modifications for ion mobility orthogonal time-of-flight mass spectrometry. Anal. Chem. 2008, 80, 2464–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prost, S.A.; Crowell, K.L.; Baker, E.S.; Ibrahim, Y.M.; Clowers, B.H.; Monroe, M.E.; Anderson, G.A.; Smith, R.D.; Payne, S.H. Detecting and removing data artifacts in Hadamard transform ion mobility-mass spectrometry measurements. J. Am. Soc. Mass Spectrom. 2014, 25, 2020–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Jing, G.; Li, W.; Liu, W.; Okonkwo, J.N.; Liu, W.; Hill, H.H., Jr. Simulating, Predicting, and Minimizing False Peaks for Hadamard Transform Ion Mobility Spectrometry. J. Am. Chem. Soc. 2020, 31, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Ying-lan, F.; Wen-qi, N.; Cheng-yin, S. A preliminary theoretical simulation of Hadamard transform of ion mobility spectrometry. Chin. J. Quantum Electron. 2013, 30, 524. [Google Scholar]
- Harwit, M.; Sloane, N.J.A. Hadamard Transform Optics; Academic Press: New York, NY, USA, 1979; pp. 1–19, 200–223. [Google Scholar]
- No, J.-S.; Song, H.-Y. Generalized Sylvester-type Hadamard Matrices. In Proceedings of the 2000 IEEE International Symposium on Information Theory (Cat. No. 00CH37060), Sorrento, Italy, 25–30 June 2000; IEEE: New York, NY, USA, 2000; p. 472. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Li, L.; Li, P. Hadamard Transform Ion Mobility Spectrometry Based on Matrix Encoding Modulation. Sensors 2023, 23, 6267. https://doi.org/10.3390/s23146267
Chen K, Li L, Li P. Hadamard Transform Ion Mobility Spectrometry Based on Matrix Encoding Modulation. Sensors. 2023; 23(14):6267. https://doi.org/10.3390/s23146267
Chicago/Turabian StyleChen, Ke, Lingfeng Li, and Peng Li. 2023. "Hadamard Transform Ion Mobility Spectrometry Based on Matrix Encoding Modulation" Sensors 23, no. 14: 6267. https://doi.org/10.3390/s23146267
APA StyleChen, K., Li, L., & Li, P. (2023). Hadamard Transform Ion Mobility Spectrometry Based on Matrix Encoding Modulation. Sensors, 23(14), 6267. https://doi.org/10.3390/s23146267