Use of Lateral Flow Assays in Forensics
Abstract
1. Introduction
2. Principle of Lateral Flow Assays
3. Lateral Flow Assays for Biological Forensic Applications
3.1. Body Fluid Identification
3.2. DNA
Class of Analyte | Analyte(s) That Can Be Detected | Type of Test | LOD | Time-to-Result | Refs. |
---|---|---|---|---|---|
Blood | Glycophorin A | Lateral flow strip, RSID test | 0.05 µL blood | Extraction: 50 min Analysis: 10 min | [29,30,31,49] |
Hemoglobin | Lateral flow strip, Seratec PMB test & Seratec HemDirect Hemoglobin test | 20 ng/mL | Extraction: 10 min Analysis: 10 min | ||
Menstrual Blood | D-dimer | Lateral flow test, clearview rapid D-dimer test | 1:30 diluted stain | Extraction: 60 min Analysis: 20 min | [26,32,49] |
Lateral flow test, PMB test, Seratec | 400 ng/mL 0.025 µL dried stain | Extraction: 10 min Analysis: 10 min | |||
Dade Dimertest Latex Assay | 0.025 µL dried stain | Analysis: 10 min | |||
Lateral flow test, OneStep D-dimer RapidCard InstaTest | 0.003125 µL dried stain | Analysis: 10 min | |||
Saliva | α-amylase | Lateral flow strip, RSID | 1 µL saliva | Extraction: 50 min Analysis: 10 min | [26,30,33] |
Lateral flow strip, Seratec Amylase test & CS | 1/1000 (50 mIU/mL) | Extraction: 10 min Analysis: 10 min | |||
Semen | Semenogelin | Lateral flow strip, RSID | 1 µL semen | Extraction: 50 min Analysis: 10 min | [35,36,37,38,39,40,41,49] |
Prostate specific antigen (PSA) | Lateral flow strip, Seratec, PSA rapid test (Atlantic International Medical), Rapid PSA (Health Tech International) | 0.5–1 ng/mL | Extraction: 50 min Analysis:10–15 min | ||
Lateral flow strip, Bluestar, Identi-PSA | 4 ng/mL | Extraction: 10 min Analysis: 10 min | |||
Lateral flow strip, Onestep ABAcard PSA test | 4 ng/mL | Analysis: 10 min | |||
Urine | Tamm-Horsfall protein | Lateral flow strip, RSID | 10 µL urine | Analysis: 15 min | [42] |
Biohazard | B. anthracis (anthrax) | Lateral flow strip, combined with NASBA | 1.5 fmol | 4 h | [44,45] |
B. anthracis, F. tularensis (tularemia), Y. pestis (plague) | Lateral flow dipstick, combined with: | [46] | |||
LAMP | 100–1000 genome copies | Reaction: 60 min Analysis: 15 min | |||
tHDA | 100–1000 genome copies | Reaction: 30 min Analysis: 15 min | |||
RPA | 100–1000 genome copies | Reaction: 90 min Analysis: 15 min | |||
Donor profiling information | Sex typing | Lateral flow stip, combined with LAMP | 10 pg | Reaction: 30 min Analysis: 30 min | [47] |
Opioid | M. speciosa | Lateral flow strip PCR | 0.01 pg | Reaction: <45 min Analysis: 10 min | [48] |
4. Lateral Flow Assays for Chemical Forensic Applications
4.1. Illicit Drugs
4.2. Biowarfare
4.3. Explosives
Class of Analyte | Analyte(s) That Can Be Detected | Type of Test | LOD | Time-to-Result | Ref. |
---|---|---|---|---|---|
Illicit drugs | cocaine, codeine, thebaine, amphetamine, ephedrine, morphine, ketamine, MDMA and methamphetamine | Colorimetric µPAD | 1.2 to 8.7 µg (MDQ) | <5 min | [54] |
amphetamine-type stimulants (in beverages) | Colorimetric nanofiber paper sensor | 0.3 μg/μL (DSK-1) and 0.8 μg/μL (DSK-2) | immediate | [55] | |
scopolamine, atropine, caffeine, cocaine, morphine, ephedrine, alprazolam and dipyrone | Colorimetric µOPTO | n.d. | 20 min | [56] | |
phenacetin (in seized cocaine) | Colorimetric paper device | 3.5 μg/mL | 1 min | [57] | |
procaine (in seized cocaine) | Colorimetric paper device | 0.9 µmol/L | n.d. | [58] | |
fentanyl and norfentanyl | Rapid Response Fentanyl Test Strips * | 0.25 µg/mL (fentanyl) and 0.05 µg/mL (norfentanyl) | 5–10 min | [59] | |
ampthetamines | Cozart RapiScan System * | 1–5 ng/mL | 5 min | [60] | |
THC, opiates, cocaine and amphetamine (in sweat) | Drug Screening Cartridge * | 68–190 pg | <10 min | [61] | |
morphine, amphetamine, methamphetamine and BZE | Lateral flow strips (competitive assay) | 1.2–20.1 mg/mL | 10 min | [62] | |
amphetamine, ketamine, cocaine, methamphetamine, opiates, marijuana and alcohol (in saliva) | DrugCheck SalivaScan * | 5–50 ng/mL (cut-off values) | 10 min | [63] | |
Biowarfare | recin | Immunoassay | 50 ng/mL (with silver enhancement 100 pg/mL) | <10 min | [65] |
botulinum neurotoxin type B | Immunoassay | 50 ng/mL (with silver enhancement 50 pg/mL) | <10 min | [65] | |
recin | BioThreat Alert Test Strips * | 3.6 ng/mL | <20 min | [67] | |
B. anthracis | Immunoassay | 400 pure spores | <30 min | [68] | |
aflatoxin B1 | Dipstick aptamer (competitive assay) | 0.1 ng/mL | 30 min | [64] | |
Explosives | TNT | LFIA and CL-LFIA | 1 µg/mL (LFIA) and 0.05 µg/mL (CL-LFIA) | 15 min | [73] |
TNT | CL-LFIA | 0.2 µg/mL | 13 min | [74] | |
metallic salts | Colorimetric µPAD | 0.025–0.4 µg | <10 min | [75] | |
inorganic and military explosives | Colorimetric µPAD (2 types) | 0.39–19.8 µg | <5 min | [76] | |
organic explosives | Colorimetric µPAD | 0.1–0.9 µg | n.d. | [77] |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.R.; Yong, K.W.; Tang, R.; Gong, Y.; Wen, T.; Li, F.; Pingguan-Murphy, B.; Bai, D.; Xu, F. Advances and Challenges of Fully Integrated Paper-Based Point-of-Care Nucleic Acid Testing. TrAC Trends Anal. Chem. 2017, 93, 37–50. [Google Scholar] [CrossRef]
- Ince, B.; Sezgintürk, M.K. Lateral Flow Assays for Viruses Diagnosis: Up-to-Date Technology and Future Prospects. Trends Anal. Chem. 2022, 157, 116725. [Google Scholar] [CrossRef] [PubMed]
- Koczula, K.M.; Gallotta, A. Lateral Flow Assays. Essays Biochem. 2016, 60, 111. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Yang, H.; Choi, J.R.; Gong, Y.; Hu, J.; Wen, T.; Li, X.; Xu, B.; Mei, Q.; Xu, F. Paper-Based Device with on-Chip Reagent Storage for Rapid Extraction of DNA from Biological Samples. Microchim. Acta 2017, 184, 2141–2150. [Google Scholar] [CrossRef]
- Zhuang, B. Development of a Fully Integrated “Sample-In-Answer-Out” System for Automatic Genetic Analysis; Springer: Singapore, 2018. [Google Scholar]
- Butler, S.A.; Khanlian, S.A.; Cole, L.A. Detection of Early Pregnancy Forms of Human Chorionic Gonadotropin by Home Pregnancy Test Devices. Clin. Chem. 2001, 47, 2131–2136. [Google Scholar] [CrossRef]
- Gondhalekar, C.; Biela, E.; Rajwa, B.; Bae, E.; Patsekin, V.; Sturgis, J.; Reynolds, C.; Doh, I.J.; Diwakar, P.; Stanker, L.; et al. Detection of E. Coli Labeled with Metal-Conjugated Antibodies Using Lateral-Flow Assay and Laser-Induced Breakdown Spectroscopy. Anal. Bioanal. Chem. 2020, 412, 1291–1301. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, Q.; Sun, N.; Jia, X.; Wang, K.; Xiao, R.; Wang, S. Smartphone-Based Fluorescent Lateral Flow Immunoassay Platform for Highly Sensitive Point-of-Care Detection of Zika Virus Nonstructural Protein 1. Anal. Chim. Acta 2019, 1055, 140–147. [Google Scholar] [CrossRef]
- Martiskainen, I.; Juntunen, E.; Salminen, T.; Vuorenpää, K.; Bayoumy, S.; Vuorinen, T.; Khanna, N.; Pettersson, K.; Batra, G.; Talha, S.M. Double-Antigen Lateral Flow Immunoassay for the Detection of Anti-HIV-1 and -2 Antibodies Using Upconverting Nanoparticle Reporters. Sensors 2021, 21, 330. [Google Scholar] [CrossRef]
- Mukama, O.; Wu, J.; Li, Z.; Liang, Q.; Yi, Z.; Lu, X.; Liu, Y.; Liu, Y.; Hussain, M.; Makafe, G.G.; et al. An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosens. Bioelectron. 2020, 159, 112143. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, B.; Chen, Q.; Feng, Q.; Lin, L.; Sun, J. Point-of-Care-Testing of Nucleic Acids by Microfluidics. TrAC Trends Anal. Chem. 2017, 94, 106–116. [Google Scholar] [CrossRef]
- Angelini, D.J.; Biggs, T.D.; Prugh, A.M.; Smith, J.A.; Hanburger, J.A.; Llano, B.; Avelar, R.; Ellis, A.; Lusk, B.; Malik Naanaa, A.; et al. The Use of Lateral Flow Immunoassays for the Detection of Fentanyl in Seized Drug Samples and Postmortem Urine. J. Forensic Sci. 2021, 66, 758–765. [Google Scholar] [CrossRef]
- Fojtíková, L.; Šuláková, A.; Blažková, M.; Holubová, B.; Kuchař, M.; Mikšátková, P.; Lapčík, O.; Fukal, L. Lateral Flow Immunoassay and Enzyme Linked Immunosorbent Assay as Effective Immunomethods for the Detection of Synthetic Cannabinoid JWH-200 Based on the Newly Synthesized Hapten. Toxicol. Rep. 2017, 5, 65–75. [Google Scholar] [CrossRef]
- Independent Forensics RSID. Available online: https://ifi-test.com/rsid/ (accessed on 20 January 2023).
- De Gruijter, M.; de Poot, C.J. The Use of Rapid Identification Information at the Crime Scene; Similarities and Differences between English and Dutch CSIs. Polic. Soc. 2018, 29, 848–868. [Google Scholar] [CrossRef]
- Pollard, C.; Sievers, C.; Royall, P.G.; Wolff, K. Evaluation of Latent Fingerprints for Drug Screening in a Social Care Setting. J. Anal. Toxicol. 2022, 46, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Bahadır, E.B.; Sezgintürk, M.K. Lateral Flow Assays: Principles, Designs and Labels. TrAC Trends Anal. Chem. 2016, 82, 286–306. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021, 15, 3593–3611. [Google Scholar] [CrossRef]
- Sajid, M.; Kawde, A.N.; Daud, M. Designs, Formats and Applications of Lateral Flow Assay: A Literature Review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef]
- Fu, E.; Liang, T.; Spicar-Mihalic, P.; Houghtaling, J.; Ramachandran, S.; Yager, P. Two-Dimensional Paper Network Format That Enables Simple Multistep Assays for Use in Low-Resource Settings in the Context of Malaria Antigen Detection. Anal. Chem. 2012, 84, 4574–4579. [Google Scholar] [CrossRef]
- De Beijer, R.P.; de Graaf, C.; van Weert, A.; van Leeuwen, T.G.; Aalders, M.C.G.; van Dam, A. Identification and Detection of Protein Markers to Differentiate between Forensically Relevant Body Fluids. Forensic Sci. Int. 2018, 290, 196–206. [Google Scholar] [CrossRef]
- Stravers, C.S.; Gool, E.L.; van Leeuwen, T.G.; Aalders, M.C.G.; van Dam, A. Multiplex Body Fluid Identification Using Surface Plasmon Resonance Imaging with Principal Component Analysis. Sens. Actuators B Chem. 2019, 283, 355–362. [Google Scholar] [CrossRef]
- An, J.H.; Shin, K.J.; Yang, W.I.; Lee, H.Y. Body Fluid Identification in Forensics. BMB Rep. 2012, 45, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Sijen, T. Molecular Approaches for Forensic Cell Type Identification: On MRNA, MiRNA, DNA Methylation and Microbial Markers. Forensic Sci. Int. Genet. 2015, 18, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Van Steendam, K.; De Ceuleneer, M.; Dhaenens, M.; Van Hoofstat, D.; Deforce, D. Mass Spectrometry-Based Proteomics as a Tool to Identify Biological Matrices in Forensic Science. Int. J. Leg. Med. 2013, 127, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.C.; Liu, K.L.; Lin, W.Y.; Lin, Y.C.; Huang, N.E.; Lee, J.C.I.; Linacre, A.; Hsieh, H.M. Evaluation of Three Commercial Kits Effective Identification of Menstrual Blood Based on the D-Dimer. Forensic Sci. Int. 2022, 338, 111389. [Google Scholar] [CrossRef]
- Bluestar Forensic Our Products. Available online: https://www.bluestar-forensic.com/en/our-products (accessed on 22 June 2023).
- RSIDTM—Independent Forensics of IL. Available online: https://www.ifi-test.com/rsid/ (accessed on 14 March 2023).
- Horjan, I.; Barbaric, L.; Mrsic, G. Applicability of Three Commercially Available Kits for Forensic Identification of Blood Stains. J. Forensic Leg. Med. 2016, 290, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Schweers, B.A.; Old, J.; Boonlayangoor, P.W.; Reich, K.A. Developmental Validation of a Novel Lateral Flow Strip Test for Rapid Identification of Human Blood (Rapid Stain IdentificationTM-Blood). Forensic Sci. Int. Genet. 2008, 2, 243–247. [Google Scholar] [CrossRef]
- Turrina, S.; Filippini, G.; Atzei, R.; Zaglia, E.; De Leo, D. Validation Studies of Rapid Stain Identification-Blood (RSID-Blood) Kit in Forensic Caseworks. Forensic Sci. Int. Genet. Suppl. Ser. 2008, 1, 74–75. [Google Scholar] [CrossRef]
- Holtkötter, H.; Dias Filho, C.R.; Schwender, K.; Stadler, C.; Vennemann, M.; Pacheco, A.C.; Roca, G. Forensic Differentiation between Peripheral and Menstrual Blood in Cases of Alleged Sexual Assault—Validating an Immunochromatographic Multiplex Assay for Simultaneous Detection of Human Hemoglobin and D-Dimer. Int. J. Leg. Med. 2018, 132, 683. [Google Scholar] [CrossRef]
- Zapico, S.C.; Lascano, V.; Sadik, T.; Paromita, P.; Amaya, J.; Stadler, C.; Roca, G. The Killer Outfit and Timing: Impact of the Fabric and Time in Body Fluid Identification and DNA Profiling. Forensic Sci. Int. Genet. Suppl. Ser. 2022, 8, 248–250. [Google Scholar] [CrossRef]
- Old, J.B.; Schweers, B.A.; Boonlayangoor, P.W.; Reich, K.A. Developmental Validation of RSIDTM-Saliva: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Saliva. J. Forensic Sci. 2009, 54, 866–873. [Google Scholar] [CrossRef]
- Hochmeister, M.N.; Budowle, B.; Rudin, O.; Gehrig, C.; Borer, U.; Thali, M.; Dirnhofer, R. Evaluation of Prostate-Specific Antigen (PSA) Membrane Test Assays for the Forensic Identification of Seminal Fluid. J. Forensic Sci. 1999, 44, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Yokota, M.; Mitani, T.; Tsujita, H.; Kobayashi, T.; Higuchi, T.; Akane, A.; Nasu, M. Evaluation of Prostate-Specific Antigen (PSA) Membrane Test for Forensic Examination of Semen. Leg. Med. 2001, 3, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.E.; Johnson, D.J.; Roberts, K.A.; Peterson, J.L. A Comparison of Rapid Stain Identification Test for Semen (RSID TM-Semen), Seratec® PSA Semiquant, and ABAcard® P30 Tests for the Forensic Identification of Seminal Fluid. Master’s Thesis, California State University, Los Angeles, CA, USA, 2011. [Google Scholar]
- Kulstein, G.; Schacker, U.; Wiegand, P. Old Meets New: Comparative Examination of Conventional and Innovative RNA-Based Methods for Body Fluid Identification of Laundered Seminal Fluid Stains after Modular Extraction of DNA and RNA. Forensic Sci. Int. Genet. 2018, 36, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.C.M.; Cheung, B.K.K. Identification of Human Semenogelin in Membrane Strip Test as an Alternative Method for the Detection of Semen. Forensic Sci. Int. 2007, 169, 27–31. [Google Scholar] [CrossRef]
- Boward, E.S.; Wilson, S.L. A Comparison of ABAcard® P30 and RSIDTM-Semen Test Kits for Forensic Semen Identification. J. Forensic Leg. Med. 2013, 20, 1126–1130. [Google Scholar] [CrossRef]
- Kishbaugh, J.M.; Cielski, S.; Fotusky, A.; Lighthart, S.; Maguire, K.; Quarino, L.; Conte, J. Detection of Prostate Specific Antigen and Salivary Amylase in Vaginal Swabs Using SERATEC® Immunochromatographic Assays. Forensic Sci. Int. 2019, 304, 109899. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K.; Sakurada, K. Specificity, Sensitivity, and Operability of RSIDTM-Urine for Forensic Identification of Urine: Comparison with ELISA for Tamm-Horsfall Protein. J. Forensic Sci. 2012, 57, 1570–1573. [Google Scholar] [CrossRef]
- Holtkötter, H.; Schwender, K.; Wiegand, P.; Peiffer, H.; Vennemann, M. Improving Body Fluid Identification in Forensic Trace Evidence—Construction of an Immunochromatographic Test Array to Rapidly Detect up to Five Body Fluids Simultaneously. Int. J. Leg. Med. 2018, 132, 83–90. [Google Scholar] [CrossRef]
- Hartley, H.A.; Baeumner, A.J. Biosensor for the Specific Detection of a Single Viable B. anthracis Spore. Anal. Bioanal. Chem. 2003, 376, 319–327. [Google Scholar] [CrossRef]
- Baeumner, A.J.; Leonard, B.; McElwee, J.; Montagna, R.A. A Rapid Biosensor for Viable B. anthracis Spores. Anal. Bioanal. Chem. 2004, 380, 15–23. [Google Scholar] [CrossRef]
- Zasada, A.A.; Zacharczuk, K.; Formińska, K.; Wiatrzyk, A.; Ziółkowski, R.; Malinowska, E. Isothermal DNA Amplification Combined with Lateral Flow Dipsticks for Detection of Biothreat Agents. Anal. Biochem. 2018, 560, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Niimi, H.; Kitajima, I. Loop-Mediated Isothermal Amplification Assay for Fluorescence Analysis and Lateral Flow Detection of Male DNA. Anal. Biochem. 2023, 664, 115029. [Google Scholar] [CrossRef] [PubMed]
- Tungphatthong, C.; Phadungcharoen, T.; Sooksawate, T.; Sukrong, S. PCR Combined with Lateral Flow Immunochromatographic Assay to Differentiate the Narcotic Mitragyna Speciosa from Related Species and Detect It in Forensic Evidence. Forensic Sci. Int. 2022, 331, 111149. [Google Scholar] [CrossRef] [PubMed]
- SERATEC Products. Available online: https://www.seratec.com/ (accessed on 22 June 2023).
- Dragan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K. Analytical Techniques for the Detection of Amphetamine-Type Substances in Different Matrices: A Comprehensive Review. TrAC Trends Anal. Chem. 2021, 145, 116447. [Google Scholar] [CrossRef]
- Bell, S. Forensic Chemistry, 3rd ed.; Taylor and Francis: Abingdon, UK, 2022; ISBN 9780429804458. [Google Scholar]
- Harper, L.; Powell, J.; Pijl, E.M. An Overview of Forensic Drug Testing Methods and Their Suitability for Harm Reduction Point-of-Care Services. Harm Reduct. J. 2017, 14, 52. [Google Scholar] [CrossRef]
- Noviana, E.; Carrão, D.B.; Pratiwi, R.; Henry, C.S. Emerging Applications of Paper-Based Analytical Devices for Drug Analysis: A Review. Anal. Chim. Acta 2020, 1116, 70–90. [Google Scholar] [CrossRef]
- Musile, G.; Wang, L.; Bottoms, J.; Tagliaro, F.; McCord, B. The Development of Paper Microfluidic Devices for Presumptive Drug Detection. Anal. Methods 2015, 7, 8025–8033. [Google Scholar] [CrossRef]
- Jang, S.; Son, S.U.; Kang, B.; Kim, J.; Lim, J.; Seo, S.; Kang, T.; Jung, J.; Lee, K.S.; Kim, H.; et al. Electrospun Nanofibrous Membrane-Based Colorimetric Device for Rapid and Simple Screening of Amphetamine-Type Stimulants in Drinks. Anal. Chem. 2022, 94, 3535–3542. [Google Scholar] [CrossRef]
- Dias, B.C.; Batista, A.D.; da Silveira Petruci, J.F. MOPTO: A Microfluidic Paper-Based Optoelectronic Tongue as Presumptive Tests for the Discrimination of Alkaloid Drugs for Forensic Purposes. Anal. Chim. Acta 2021, 1187, 339141. [Google Scholar] [CrossRef]
- Da Silva, G.O.; de Araujo, W.R.; Paixão, T.R.L.C. Portable and Low-Cost Colorimetric Office Paper-Based Device for Phenacetin Detection in Seized Cocaine Samples. Talanta 2018, 176, 674–678. [Google Scholar] [CrossRef]
- Silva, T.G.; De Araujo, W.R.; Muñoz, R.A.A.; Richter, E.M.; Santana, M.H.P.; Coltro, W.K.T.; Paixão, T.R.L.C. Simple and Sensitive Paper-Based Device Coupling Electrochemical Sample Pretreatment and Colorimetric Detection. Anal. Chem. 2016, 88, 5145–5151. [Google Scholar] [CrossRef] [PubMed]
- Angelini, D.J.; Biggs, T.D.; Prugh, A.M.; Smith, J.A.; Hanburger, J.A.; Llano, B.; Avelar, R.; Ellis, A.; Lusk, B.; Naanaa, A.; et al. Detection of Fentanyl and Derivatives Using a Lateral Flow Immunoassay. Forensic Chem. 2021, 23, 100309. [Google Scholar] [CrossRef]
- Wilson, L.; Jehanli, A.; Hand, C.; Cooper, G.; Smith, R. Evaluation of a Rapid Oral Fluid Point-of-Care Test for MDMA. J. Anal. Toxicol. 2007, 31, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.; Stuchinskaya, T.; Ramma, S.; Patel, J.; Sievers, C.; Goetz, S.; Hines, S.; Menzies, E.; Russell, D.A. Drug Screening Using the Sweat of a Fingerprint: Lateral Flow Detection of Δ9-Tetrahydrocannabinol, Cocaine, Opiates and Amphetamine. J. Anal. Toxicol. 2019, 43, 88. [Google Scholar] [CrossRef]
- Taranova, N.A.; Byzova, N.A.; Zaiko, V.V.; Starovoitova, T.A.; Vengerov, Y.Y.; Zherdev, A.V.; Dzantiev, B.B. Integration of Lateral Flow and Microarray Technologies for Multiplex Immunoassay: Application to the Determination of Drugs of Abuse. Microchim. Acta 2013, 180, 1165–1172. [Google Scholar] [CrossRef]
- Carrio, A.; Sampedro, C.; Sanchez-Lopez, J.L.; Pimienta, M.; Campoy, P. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection. Sensors 2015, 15, 29569–29593. [Google Scholar] [CrossRef]
- Shim, W.B.; Kim, M.J.; Mun, H.; Kim, M.G. An Aptamer-Based Dipstick Assay for the Rapid and Simple Detection of Aflatoxin B1. Biosens. Bioelectron. 2014, 62, 288–294. [Google Scholar] [CrossRef]
- Shyu, R.H.; Shyu, H.F.; Liu, H.W.; Tang, S.S. Colloidal Gold-Based Immunochromatographic Assay for Detection of Ricin. Toxicon 2002, 40, 255–258. [Google Scholar] [CrossRef]
- Chiao, D.J.; Shyu, R.H.; Hu, C.S.; Chiang, H.Y.; Tang, S.S. Colloidal Gold-Based Immunochromatographic Assay for Detection of Botulinum Neurotoxin Type B. J. Chromatogr. B 2004, 809, 37–41. [Google Scholar] [CrossRef]
- Hodge, D.R.; Prentice, K.W.; Ramage, J.G.; Prezioso, S.; Gauthier, C.; Swanson, T.; Hastings, R.; Basavanna, U.; Datta, S.; Sharma, S.K.; et al. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Ricin in Suspicious White Powders and Environmental Samples. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2013, 11, 237–250. [Google Scholar] [CrossRef]
- Wang, D.B.; Tian, B.; Zhang, Z.P.; Deng, J.Y.; Cui, Z.Q.; Yang, R.F.; Wang, X.Y.; Wei, H.P.; Zhang, X.E. Rapid Detection of Bacillus Anthracis Spores Using a Super-Paramagnetic Lateral-Flow Immunological Detectionsystem. Biosens. Bioelectron. 2013, 42, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, Z.; Huang, Z.; Li, K.; Lv, Y. Biosensors for Explosives: State of Art and Future Trends. TrAC Trends Anal. Chem. 2019, 118, 123–137. [Google Scholar] [CrossRef]
- Caygill, J.S.; Davis, F.; Higson, S.P.J. Current Trends in Explosive Detection Techniques. Talanta 2012, 88, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.G.; D’Souza, N.; Nicklin, S. A Review of Biosensors and Biologically-Inspired Systems for Explosives Detection. Analyst 2008, 133, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Afiq Mohamed Huri, M.; Kalthom Ahmad, U.; Ibrahim, R.; Omar, M. A Review of Explosive Residue Detection from Forensic Chemistry Perspective. Malays. J. Anal. Sci. 2017, 21, 267–282. [Google Scholar] [CrossRef]
- Romolo, F.S.; Ferri, E.; Mirasoli, M.; D’Elia, M.; Ripani, L.; Peluso, G.; Risoluti, R.; Maiolini, E.; Girotti, S. Field Detection Capability of Immunochemical Assays during Criminal Investigations Involving the Use of TNT. Forensic Sci. Int. 2015, 246, 25–30. [Google Scholar] [CrossRef]
- Mirasoli, M.; Buragina, A.; Dolci, L.S.; Guardigli, M.; Simoni, P.; Montoya, A.; Maiolini, E.; Girotti, S.; Roda, A. Development of a Chemiluminescence-Based Quantitative Lateral Flow Immunoassay for on-Field Detection of 2,4,6-Trinitrotoluene. Anal. Chim. Acta 2012, 721, 167–172. [Google Scholar] [CrossRef]
- Chabaud, K.R.; Thomas, J.L.; Torres, M.N.; Oliveira, S.; McCord, B.R. Simultaneous Colorimetric Detection of Metallic Salts Contained in Low Explosives Residue Using a Microfluidic Paper-Based Analytical Device (MPAD). Forensic Chem. 2018, 9, 35–41. [Google Scholar] [CrossRef]
- Peters, K.L.; Corbin, I.; Kaufman, L.M.; Zreibe, K.; Blanes, L.; McCord, B.R. Simultaneous Colorimetric Detection of Improvised Explosive Compounds Using Microfluidic Paper-Based Analytical Devices (MPADs). Anal. Methods 2014, 7, 63–70. [Google Scholar] [CrossRef]
- Taudte, R.V.; Beavis, A.; Wilson-Wilde, L.; Roux, C.; Doble, P.; Blanes, L. A Portable Explosive Detector Based on Fluorescence Quenching of Pyrene Deposited on Coloured Wax-Printed MPADs. Lab Chip 2013, 13, 4164–4172. [Google Scholar] [CrossRef]
- Conte, J.; Ruddy, A.; Domonoski, L.; Shanahan, A.; Daley, N.; McDevitt, C.; Roca, G. Recovery of DNA from SERATEC Immunochromatographic PSA and Saliva Test Strips. J. Forensic Sci. 2022, 67, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruijns, B.; Tiggelaar, R.; Knotter, J.; van Dam, A. Use of Lateral Flow Assays in Forensics. Sensors 2023, 23, 6201. https://doi.org/10.3390/s23136201
Bruijns B, Tiggelaar R, Knotter J, van Dam A. Use of Lateral Flow Assays in Forensics. Sensors. 2023; 23(13):6201. https://doi.org/10.3390/s23136201
Chicago/Turabian StyleBruijns, Brigitte, Roald Tiggelaar, Jaap Knotter, and Annemieke van Dam. 2023. "Use of Lateral Flow Assays in Forensics" Sensors 23, no. 13: 6201. https://doi.org/10.3390/s23136201
APA StyleBruijns, B., Tiggelaar, R., Knotter, J., & van Dam, A. (2023). Use of Lateral Flow Assays in Forensics. Sensors, 23(13), 6201. https://doi.org/10.3390/s23136201