System Based on an Inertial Measurement Unit for Accurate Flight Time Determination in Vertical Jumps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Flight Time and Jump Height Determination Algorithm
- P1: This point is the absolute minimum among all the data collected by the inertial system, and corresponds to the descent to the ground after the jump.
- P2: This point represents the absolute maximum of the data and is associated with the moment when the upward impulse occurs during the jump.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez-Chirinos Buxadé, C.; Fernández-Valdés, B.; Morral-Yepes, M.; Tuyà Viñas, S.; Padullés Riu, J.M.; Moras Feliu, G. Validity of a Magnet-Based Timing System Using the Magnetometer Built into an IMU. Sensors 2021, 21, 5773. [Google Scholar] [CrossRef]
- Perri, T.; Reid, M.; Murphy, A.; Howle, K.; Duffield, R. Prototype Machine Learning Algorithms from Wearable Technology to Detect Tennis Stroke and Movement Actions. Sensors 2022, 22, 8868. [Google Scholar] [CrossRef] [PubMed]
- Azadi, B.; Haslgrübler, M.; Anzengruber-Tanase, B.; Grünberger, S.; Ferscha, A. Alpine Skiing Activity Recognition Using Smartphone’s IMUs. Sensors 2022, 22, 5922. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Chen, I.-M. Human Velocity and Dynamic Behavior Tracking Method for Inertialcapture System. Sens. Actuators 2012, 183, 123. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, I.-M. Localization and Velocity Tracking of Human via 3 IMU Sensors. Sens. Actuators A Phys. 2014, 212, 25–33. [Google Scholar] [CrossRef]
- López-Nava, I.H.; Muñoz-Meléndez, A. Wearable Inertial Sensors for Human Motion Analysis: A Review. IEEE Sens. J. 2016, 16, 7821–7834. [Google Scholar] [CrossRef]
- Vezočnik, M.; Juric, M.B. Average Step Length Estimation Models’ Evaluation Using Inertial Sensors: A Review. IEEE Sens. J. 2019, 19, 396–403. [Google Scholar] [CrossRef]
- RajKumar, A.; Vulpi, F.; Bethi, S.R.; Wazir, H.K.; Raghavan, P.; Kapila, V. Wearable Inertial Sensors for Range of Motion Assessment. IEEE Sens. J. 2020, 20, 3777–3787. [Google Scholar] [CrossRef]
- Liu, H.; Hartmann, Y.; Schultz, T. A Practical Wearable Sensor-Based Human Activity Recognition Research Pipeline. In Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies, Online, 9–11 February 2022. [Google Scholar]
- Liu, H.; Hartmann, Y.; Schultz, T. CSL-SHARE: A Multimodal Wearable Sensor-Based Human Activity Dataset. Front. Comput. Sci. 2021, 3, 759136. [Google Scholar] [CrossRef]
- Hartmann, Y.; Liu, H.; Schultz, T. Interactive and Interpretable Online Human Activity Recognition. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Biarritz, France, 21–25 March 2022; pp. 109–111. [Google Scholar]
- Samozino, P.; Morin, J.-B.; Hintzy, F.; Belli, A. A Simple Method for Measuring Force, Velocity and Power Output during Squat Jump. J. Biomech. 2008, 41, 2940–2945. [Google Scholar] [CrossRef]
- Cross, M.R.; Rivière, J.R.; Van Hooren, B.; Coulmy, N.; Jiménez-Reyes, P.; Morin, J.-B.; Samozino, P. The Effect of Countermovement on Force Production Capacity Depends on Extension Velocity: A Study of Alpine Skiers and Sprinters. J. Sports Sci. 2021, 39, 1882–1892. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Lidor, R. Vertical Jump in Female and Male Basketball Players—A Review of Observational and Experimental Studies. J. Sci. Med. Sport 2010, 13, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Straeten, M.; Rajai, P.; Ahamed, M.J. Method and Implementation of Micro Inertial Measurement Unit (IMU) in Sensing Basketball Dynamics. Sens. Actuators A Phys. 2019, 293, 7–13. [Google Scholar] [CrossRef]
- Kasabalis, A.; Douda, H.; Tokmakidis, S.P. Relationship between Anaerobic Power and Jumping of Selected Male Volleyball Players of Different Ages. Percept. Mot. Skills 2005, 100, 607–614. [Google Scholar] [CrossRef]
- Baker, D. Improving Vertical Jump Performance Through General, Special, and Specific Strength Training: A Brief Review. J. Strength Cond. Res. 1996, 10, 131–136. [Google Scholar] [CrossRef]
- Klavora, P. Vertical-Jump Tests: A Critical Review. Strength Cond. J. 2000, 22, 70. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of Vertical Jump Measurement Devices. J. Sports Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Aragón-Vargas, L. Evaluation of Four Vertical Jump Tests: Methodology, Reliability, Validity, and Accuracy. Meas. Phys. Educ. Exerc. Sci. 2000, 4, 215–228. [Google Scholar] [CrossRef] [Green Version]
- García-López, J.; Peleteiro, J.; Rodgríguez-Marroyo, J.A.; Morante, J.C.; Herrero, J.A.; Villa, J.G. The Validation of a New Method That Measures Contact and Flight Times during Vertical Jump. Int. J. Sports Med. 2005, 26, 294–302. [Google Scholar] [CrossRef]
- Leard, J.S.; Cirillo, M.A.; Katsnelson, E.; Kimiatek, D.A.; Miller, T.W.; Trebincevic, K.; Garbalosa, J.C. Validity of Two Alternative Systems for Measuring Vertical Jump Height. J. Strength Cond. Res. 2007, 21, 1296–1299. [Google Scholar] [CrossRef]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Dias, J.A.; Dal Pupo, J.; Reis, D.C.; Borges, L.; Santos, S.G.; Moro, A.R.P.; Borges, N.G. Validity of Two Methods for Estimation of Vertical Jump Height. J. Strength Cond. Res. 2011, 25, 2034–2039. [Google Scholar] [CrossRef]
- Requena, B.; García, I.; Requena, F.; Saez-Saez de Villarreal, E.; Pääsuke, M. Reliability and Validity of a Wireless Microelectromechanicals Based System (KeimoveTM) for Measuring Vertical Jumping Performance. J. Sports Sci. Med. 2012, 11, 115–122. [Google Scholar] [PubMed]
- MacDonald, K.; Bahr, R.; Baltich, J.; Whittaker, J.L.; Meeuwisse, W.H. Validation of an Inertial Measurement Unit for the Measurement of Jump Count and Height. Phys. Ther. Sport 2017, 25, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Baca, A. A Comparison of Methods for Analyzing Drop Jump Performance. Med. Sci. Sports Exerc. 1999, 31, 437–442. [Google Scholar] [CrossRef]
- Musayev, E. Optoelectronic Vertical Jump Height Measuring Method and Device. Measurement 2006, 39, 312–319. [Google Scholar] [CrossRef]
- Martínez-Martí, F.; González-Montesinos, J.L.; Morales, D.P.; Santos, J.R.F.; Castro-Piñero, J.; Carvajal, M.A.; Palma, A.J. Validation of Instrumented Insoles for Measuring Height in Vertical Jump. Int. J. Sports Med. 2016, 37, 374–381. [Google Scholar] [CrossRef]
- García-López, J.; Morante, J.C.; Ogueta-Alday, A.; Rodríguez-Marroyo, J.A. The Type of Mat (Contact vs. Photocell) Affects Vertical Jump Height Estimated from Flight Time. J. Strength Cond. Res. 2013, 27, 1162–1167. [Google Scholar] [CrossRef]
- Aydemir, G.A.; Saranlı, A. Characterization and Calibration of MEMS Inertial Sensors for State and Parameter Estimation Applications. Measurement 2012, 45, 1210–1225. [Google Scholar] [CrossRef]
- Pollind, M.; Soangra, R. Development and Validation of Wearable Inertial Sensor System for Postural Sway Analysis. Measurement 2020, 165, 108101. [Google Scholar] [CrossRef]
- Casartelli, N.; Müller, R.; Maffiuletti, N.A. Validity and Reliability of the Myotest Accelerometric System for the Assessment of Vertical Jump Height. J. Strength Cond. Res. 2010, 24, 3186–3193. [Google Scholar] [CrossRef] [PubMed]
- Magnúsdóttir, Á.; Þorgilsson, B.; Karlsson, B. Comparing Three Devices for Jump Height Measurement in a Heterogeneous Group of Subjects. J. Strength Cond. Res. 2014, 28, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, R.S. Quantifying the Effects of Load Carriage and Fatigue under Load on Sacral Kinematics during Countermovement Vertical Jump with IMU-Based Method. Sport. Eng. 2016, 19, 21–34. [Google Scholar] [CrossRef]
- McMaster, D.T.; Tavares, F.; O’Donnell, S.; Driller, M. Validity of Vertical Jump Measurement Systems. Meas. Phys. Educ. Exerc. Sci. 2021, 25, 95–100. [Google Scholar] [CrossRef]
- Picerno, P.; Camomilla, V.; Capranica, L. Countermovement Jump Performance Assessment Using a Wearable 3D Inertial Measurement Unit. J. Sport. Sci. 2011, 29, 139–146. [Google Scholar] [CrossRef]
- Rantalainen, T.; Gastin, P.B.; Spangler, R.; Wundersitz, D. Concurrent Validity and Reliability of Torso-Worn Inertial Measurement Unit for Jump Power and Height Estimation. J. Sports Sci. 2018, 36, 1937–1942. [Google Scholar] [CrossRef]
- Rantalainen, T.; Finni, T.; Walker, S. Jump Height from Inertial Recordings: A Tutorial for a Sports Scientist. Scand. J. Med. Sci. Sport. 2020, 30, 38–45. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The Validity and Reliability of an IPhone App for Measuring Vertical Jump Performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity of Inertial Sensor Based 3D Joint Kinematics of Static and Dynamic Sport and Physiotherapy Specific Movements. PLoS ONE 2019, 14, e0213064. [Google Scholar] [CrossRef] [Green Version]
- Harriss, D.J.; MacSween, A.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2020 Update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of Performance Measurements Derived from Ground Reaction Force Data during Countermovement Jump and the Influence of Sampling Frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatze, H. Validity and Reliability of Methods for Testing Vertical Jumping Performance. J. Appl. Biomech. 1998, 14, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Kibele, A. Possibilities and Limitations in the Biomechanical Analysis of Countermovement Jumps: A Methodological Study. J. Appl. Biomech. 1998, 14, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and Factorial Validity of Squat and Countermovement Jump Tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar]
- Lesinski, M.; Muehlbauer, T.; Granacher, U. Concurrent Validity of the Gyko Inertial Sensor System for the Assessment of Vertical Jump Height in Female Sub-Elite Youth Soccer Players. BMC Sports Sci. Med. Rehabil. 2016, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Setuain, I.; Martinikorena, J.; Gonzalez-Izal, M.; Martinez-Ramirez, A.; Gómez, M.; Alfaro-Adrián, J.; Izquierdo, M. Vertical Jumping Biomechanical Evaluation through the Use of an Inertial Sensor-Based Technology. J. Sports Sci. 2016, 34, 843–851. [Google Scholar] [CrossRef]
- Rantalainen, T.; Hesketh, K.D.; Rodda, C.; Duckham, R.L. Validity of Hip-Worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents. Scand. J. Med. Sci. Sports 2018, 28, 2183–2188. [Google Scholar] [CrossRef] [Green Version]
Platform | Inertial System | |||||
---|---|---|---|---|---|---|
Jump 1 | Jump 2 | Jump 3 | Jump 1 | Jump 2 | Jump 3 | |
Subject 1 | 0.51 | 0.47 | 0.52 | 0.50 | 0.48 | 0.52 |
Subject 2 | 0.37 | 0.41 | 0.40 | 0.38 | 0.42 | 0.37 |
Subject 3 | 0.48 | 0.48 | 0.48 | 0.47 | 0.49 | 0.48 |
Subject 4 | 0.52 | 0.53 | 0.54 | 0.52 | 0.55 | 0.55 |
Subject 5 | 0.52 | 0.52 | 0.54 | 0.52 | 0.49 | 0.53 |
Subject 6 | 0.37 | 0.37 | 0.40 | 0.38 | 0.37 | 0.39 |
Subject 7 | 0.56 | 0.56 | 0.56 | 0.56 | 0.55 | 0.56 |
Jump 1 | Jump 2 | Jump 3 | |
---|---|---|---|
Subject 1 | 0.59 | −2.56 | −0.39 |
Subject 2 | −2.69 | −1.47 | 6.47 |
Subject 3 | 1.04 | −2.95 | −0.42 |
Subject 4 | −0.19 | −3.99 | −1.66 |
Subject 5 | 1.34 | 6.88 | 2.05 |
Subject 6 | −1.35 | 1.34 | 2.99 |
Subject 7 | 0.89 | 1.97 | −0.36 |
Platform | Inertial System | |||||
---|---|---|---|---|---|---|
Jump 1 | Jump 2 | Jump 3 | Jump 1 | Jump 2 | Jump 3 | |
Subject 1 | 0.31 | 0.27 | 0.32 | 0.31 | 0.28 | 0.33 |
Subject 2 | 0.15 | 0.19 | 0.18 | 0.18 | 0.21 | 0.17 |
Subject 3 | 0.28 | 0.27 | 0.28 | 0.28 | 0.29 | 0.29 |
Subject 4 | 0.33 | 0.33 | 0.35 | 0.34 | 0.37 | 0.37 |
Subject 5 | 0.33 | 0.33 | 0.35 | 0.33 | 0.29 | 0.34 |
Subject 6 | 0.17 | 0.17 | 0.195 | 0.17 | 0.17 | 0.19 |
Subject 7 | 0.38 | 0.38 | 0.37 | 0.38 | 0.37 | 0.38 |
Jump 1 | Jump 2 | Jump 3 | |
---|---|---|---|
Subject 1 | 0.31 | −3.08 | 2.47 |
Subject 2 | 17.69 | 9.39 | 3.67 |
Subject 3 | 1.63 | −7.77 | −2.14 |
Subject 4 | −1.92 | −10.2 | −5.05 |
Subject 5 | 0.79 | 11.9 | 3.28 |
Subject 6 | −4.40 | 0.05 | 4.62 |
Subject 7 | −0.16 | 2.35 | −2.97 |
System | Sampling Frequency | Data Sending/Processing Method | Mean Bias | Acceleration Range | Correlation Coefficient |
---|---|---|---|---|---|
KineJump [34] | 640 Hz | Data to PC via USB | −11.7 (5.1) cm | 6 g | 0.85 |
IMU (Sensorize, Rome, Italy) [37] | 100 Hz | Data to PC via Bluetooth | 0.6 cm | 6 g | 0.87 |
iPhone s5 (APP) [40] | 120 Hz | Video Recording | 1.1 (0.5) cm | - | 0.99 |
YEI 3-Space sensors (Yost Engineering, Portsmouth) [35] | 300 Hz | Data in flash memory PC via USB | 0.3 (3.2) cm | - | 0.98 |
IMU Push 2.0 Strength Inc., Toronto, Canada [36] | 200 Hz | Bluetooth Connection to APP | +8 cm | - | 0.89 |
NGIMU, x-io Technologies Limited [39] | 400 Hz | Treatment with Matlab (PC) | −0.1 cm | 16 g | 0.97 |
Myotest accelerometric system (Myotest SA, Sion, Switzerland) [33] | 500 Hz | - | 7.24 (2.82) cm | 8 g | 0.98 |
x-BIMU Bluetooth Kit (x-io Technologies Limited, UK) [49] | 256 Hz | - | 5.5 cm | 16 g | 0.90 |
This system | 200 Hz | Data to APP via Bluetooth | −0.5 cm | 16 g | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Pérez, J.A.; Ruiz-García, I.; Navarro-Marchal, I.; López-Ruiz, N.; Gómez-López, P.J.; Palma, A.J.; Carvajal, M.A. System Based on an Inertial Measurement Unit for Accurate Flight Time Determination in Vertical Jumps. Sensors 2023, 23, 6022. https://doi.org/10.3390/s23136022
Moreno-Pérez JA, Ruiz-García I, Navarro-Marchal I, López-Ruiz N, Gómez-López PJ, Palma AJ, Carvajal MA. System Based on an Inertial Measurement Unit for Accurate Flight Time Determination in Vertical Jumps. Sensors. 2023; 23(13):6022. https://doi.org/10.3390/s23136022
Chicago/Turabian StyleMoreno-Pérez, Juan A., Isidoro Ruiz-García, Ismael Navarro-Marchal, Nuria López-Ruiz, Pablo J. Gómez-López, Alberto J. Palma, and Miguel A. Carvajal. 2023. "System Based on an Inertial Measurement Unit for Accurate Flight Time Determination in Vertical Jumps" Sensors 23, no. 13: 6022. https://doi.org/10.3390/s23136022
APA StyleMoreno-Pérez, J. A., Ruiz-García, I., Navarro-Marchal, I., López-Ruiz, N., Gómez-López, P. J., Palma, A. J., & Carvajal, M. A. (2023). System Based on an Inertial Measurement Unit for Accurate Flight Time Determination in Vertical Jumps. Sensors, 23(13), 6022. https://doi.org/10.3390/s23136022