A Multi-Scale Dehazing Network with Dark Channel Priors
Abstract
:1. Introduction
- (1)
- We propose a multi-scale feature extraction module (FEM) that effectively extracts features with relatively few parameters and low computational overhead. Additionally, it facilitates larger receptive fields than regular convolutions and includes pixel attention to improve the network’s capability to learn haze features.
- (2)
- We propose a feature fusion module (FFM) that dynamically fuses feature information from various scales, filters out collision information, and improves the quality of the haze information.
- (3)
- We propose a dark channel refinement module (DCRM) that is guided by dark channel priors, to improve the enhancement and refinement of learned haze information, to facilitate the accurate restoration of the original scene, and ultimately, to reconstruct the enhanced image with better visual quality.
2. Related Work
3. Proposed Method
3.1. Method Overview
3.2. Feature Extraction Module
3.3. Feature Fusion Module
3.4. Dark Channel Refinement Module
3.5. Loss Function
4. Experiments
4.1. Experimental Dataset and Parameter Environment
4.2. Objective Evaluation
4.3. Visual Analysis
4.4. Computational Complexity Analysis
4.5. Ablation Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Wang, Z. Research and Implementation of Image Dehazing Based on Deep Learning. In Proceedings of the 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 23–25 September 2022; pp. 40–44. [Google Scholar]
- Karkera, T.; Singh, C. Autonomous bot using machine learning and computer vision. SN Comput. Sci. 2021, 2, 251. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, Y.; Wei, H.; Li, Y.; Qi, G.; Mazur, N.; Li, Y.; Li, P. Atmospheric light estimation based remote sensing image dehazing. Remote Sens. 2021, 13, 2432. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Qu, Y.; Lin, S.; Zhou, J.; Qiao, R.; Zhang, Z.; Xie, Y.; Ma, L. Contrastive learning for compact single image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10551–10560. [Google Scholar]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling up your kernels to 31×31: Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11963–11975. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Chromatic framework for vision in bad weather. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 15 June 2020; CVPR 2000 (Cat. No. PR00662). Volume 1, pp. 598–605. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; He, B.; Wu, Q. Single image dehazing based on dark channel prior and energy minimization. IEEE Signal Process. Lett. 2017, 25, 174–178. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z. Haze removal: Push DCP at the edge. IEEE Signal Process. Lett. 2020, 27, 1405–1409. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Patel, V.M. Densely connected pyramid dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3194–3203. [Google Scholar]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. Griddehazenet: Attention-based multi-scale network for image dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7314–7323. [Google Scholar]
- Wang, D.; Zhang, Y.; Wan, Z.; Gu, F.; Chen, M.; Zhou, Y.; Zhang, Y.; Zhu, Y. A Novel Approach for Image Dehazing via Spatial and Channel Feature Fusion. In Proceedings of the 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC), Hangzhou, China, 16–19 September 2022; pp. 314–317. [Google Scholar]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11908–11915. [Google Scholar]
- Xu, H.; Ma, J.; Le, Z.; Jiang, J.; Guo, X. Fusiondn: A unified densely connected network for image fusion. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12484–12491. [Google Scholar]
- Luo, H.; Chen, Y.; Zhou, Y. An extremely effective spatial pyramid and pixel shuffle upsampling decoder for multiscale monocular depth estimation. Comput. Intell. Neurosci. 2022, 2022, 4668001. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 510–519. [Google Scholar]
- Liu, Y.; Zhu, L.; Pei, S.; Fu, H.; Qin, J.; Zhang, Q.; Wan, L.; Feng, W. From synthetic to real: Image dehazing collaborating with unlabeled real data. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 50–58. [Google Scholar]
- Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor segmentation and support inference from rgbd images. In ECCV (5); Springer: Berlin/Heidelberg, Germany, 2012; Volume 7576, pp. 746–760. [Google Scholar]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Zhang, L.; Huang, S.; Shen, Y.; Zhao, S. Dehazing evaluation: Real-world benchmark datasets, criteria, and baselines. IEEE Trans. Image Process. 2020, 29, 6947–6962. [Google Scholar] [CrossRef]
- Wang, C.; Fan, H.; Zhang, H.; Li, Z. Pixel-Level dehazed image quality assessment based on dark channel prior and depth. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 1545–1549. [Google Scholar]
- Dong, H.; Pan, J.; Xiang, L.; Hu, Z.; Zhang, X.; Wang, F.; Yang, M.-H. Multi-scale boosted dehazing network with dense feature fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 15 June 2020; pp. 2157–2167. [Google Scholar]
- Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. Maxim: Multi-axis mlp for image processing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5769–5780. [Google Scholar]
- Chen, Z.; He, Z.; Lu, Z.M. DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention. arXiv 2023, arXiv:2301.04805. [Google Scholar]
Methods | Haze4K | SOTS | ||
---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | |
DCP | 13.48 | 0.757 | 15.63 | 0.782 |
DehazeNet | 18.62 | 0.836 | 19.14 | 0.805 |
MSBDN | 22.35 | 0.842 | 31.58 | 0.978 |
FFANet | 25.68 | 0.948 | 33.72 | 0.981 |
DMT-Net | 28.53 | 0.965 | 29.42 | 0.971 |
MAXIM | 28.61 | 0.964 | 34.19 | 0.985 |
DEA-Net | 28.74 | 0.978 | 35.64 | 0.987 |
Ours | 29.57 | 0.981 | 34.71 | 0.989 |
Methods | Overhead | |
---|---|---|
Parameters | FLOPs | |
DehazeNet | 0.008 | 0.514 |
MSBDN | 31.35 | 24.44 |
FFANet | 4.456 | 287.5 |
DMT-Net | 51.79 | 75.56 |
MAXIM | 14.1 | 216 |
DEA-Net | 2.844 | 24.48 |
Ours | 3.158 | 18.72 |
Methods | PSNR | SSIM |
---|---|---|
BL | 24.35 | 0.953 |
BL + FEM | 27.52 | 0.974 |
BL + FFM | 25.13 | 0.962 |
BL + DCRM | 25.08 | 0.960 |
BL + FEM + FFM | 28.73 | 0.979 |
BL + FEM + FFM + DCRM | 29.57 | 0.981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Yang, H.; Yu, S.; Wang, J.; Nie, Z. A Multi-Scale Dehazing Network with Dark Channel Priors. Sensors 2023, 23, 5980. https://doi.org/10.3390/s23135980
Yang G, Yang H, Yu S, Wang J, Nie Z. A Multi-Scale Dehazing Network with Dark Channel Priors. Sensors. 2023; 23(13):5980. https://doi.org/10.3390/s23135980
Chicago/Turabian StyleYang, Guoliang, Hao Yang, Shuaiying Yu, Jixiang Wang, and Ziling Nie. 2023. "A Multi-Scale Dehazing Network with Dark Channel Priors" Sensors 23, no. 13: 5980. https://doi.org/10.3390/s23135980
APA StyleYang, G., Yang, H., Yu, S., Wang, J., & Nie, Z. (2023). A Multi-Scale Dehazing Network with Dark Channel Priors. Sensors, 23(13), 5980. https://doi.org/10.3390/s23135980