Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review
Abstract
:1. Introduction
2. Potentiometry and Ion-Selective Electrodes
3. Statistics
4. Solid Contact Materials
4.1. Conductive Polymers
4.2. Carbon Nanomaterials
4.3. Metal and Metal Oxide Nanoparticles
4.4. Nanocomposites
4.4.1. Composites Based on Polymers and Carbon Nanomaterials
4.4.2. Composites Based on Polymers with Other Materials
4.4.3. Composites Based on Carbon Nanomaterials with Other Materials
4.4.4. Other Composites
5. Comparative Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindner, E.; Gyurcsányi, R.E. Quality Control Criteria for Solid-Contact, Solvent Polymeric Membrane Ion-Selective Electrodes. J. Solid State Electrochem. 2009, 13, 51–68. [Google Scholar] [CrossRef]
- Bieg, C.; Fuchsberger, K.; Stelzle, M. Introduction to Polymer-Based Solid-Contact Ion-Selective Electrodes—Basic Concepts, Practical Considerations, and Current Research Topics. Anal. Bioanal. Chem. 2017, 409, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; David-Pur, M.; Hanein, Y. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications. ACS Appl. Mater. Interfaces 2017, 9, 35169–35177. [Google Scholar] [CrossRef] [PubMed]
- Parrilla, M.; Cuartero, M.; Crespo, G.A. Wearable Potentiometric Ion Sensors. Trends Anal. Chem. 2019, 110, 303–320. [Google Scholar] [CrossRef]
- Mousavi, Z.; Granholm, K.; Sokalski, T.; Lewenstam, A. All-Solid-State Electrochemical Platform for Potentiometric Measurements. Sens. Actuators B Chem. 2015, 207, 895–899. [Google Scholar] [CrossRef]
- Ozer, T. Low-Cost Pencil-Graphite Multi-Electrodes for Simultaneous Detection of Iron and Copper. J. Turk. Chem. Soc. Sect. A Chem. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Cuartero, M.; Ruiz, A.; Galián, M.; Ortuño, J.A. Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters. Sensors 2022, 22, 6204. [Google Scholar] [CrossRef]
- Chango, G.; Palacio, E.; Cerdà, V. Potentiometric Chip-Based Multipumping Flow System for the Simultaneous Determination of Fluoride, Chloride, PH, and Redox Potential in Water Samples. Talanta 2018, 186, 554–560. [Google Scholar] [CrossRef]
- Zuliani, C.; Diamond, D. Opportunities and Challenges of Using Ion-Selective Electrodes in Environmental Monitoring and Wearable Sensors. Electrochim. Acta 2012, 84, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Chaneam, S.; Taweetong, W.; Kaewyai, K.; Thienwong, P.; Takaew, A.; Chaisuksant, R. Fabrication of a Nitrate Selective Electrode for Determination of Nitrate in Fertilizers by Using Flow Injection Analysis System. Procedia Chem. 2016, 20, 73–75. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.K.T.; Araujo, A.N.; Montenegro, M.C.B.S.M.; Pérez-Olmos, R. New PVC Nitrate-Selective Electrode: Application to Vegetables and Mineral Waters. J. Agric. Food Chem. 2005, 53, 211–215. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, C.; Wang, R.; Hu, G.; Miao, J.; Hai, K.; Lin, C. Determination of Copper(II) Ion in Food Using an Ionic Liquids-Carbon Nanotubes-Based Ion-Selective Electrode. J. Food Compos. Anal. 2017, 62, 63–68. [Google Scholar] [CrossRef]
- Chapman, B.R.; Goldsmith, I.R. Determination of Chloride, Sodium and Potassium in Salted Foodstuffs Using Ion-Selective Electrodes and the Dry Sample Addition Method. Analyst 1982, 107, 1014–1018. [Google Scholar] [CrossRef]
- Abd El-Rahman, M.K.; Salem, M.Y. Ion Selective Electrode (in-Line Analyzer) versus UV-Spectroscopy (at-Line Analyzer); Which Strategy Offers More Opportunities for Real Time Monitoring of the Degradation Kinetics of Pyridostigmine Bromide. Sens. Actuators B Chem. 2015, 220, 255–262. [Google Scholar] [CrossRef]
- Numnuam, A.; Chumbimuni-Torres, K.Y.; Xiang, Y.; Bash, R.; Thavarungkul, P.; Kanatharana, P.; Pretsch, E.; Wang, J.; Bakker, E. Potentiometric Detection of DNA Hybridization. J. Am. Chem. Soc. 2008, 130, 410–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koncki, R. Recent Developments in Potentiometric Biosensors for Biomedical Analysis. Anal. Chim. Acta 2007, 599, 7–15. [Google Scholar] [CrossRef] [PubMed]
- van de Velde, L.; d’Angremont, E.; Olthuis, W. Solid Contact Potassium Selective Electrodes for Biomedical Applications—A Review. Talanta 2016, 160, 56–65. [Google Scholar] [CrossRef]
- Morris, D.; Coyle, S.; Wu, Y.; Lau, K.T.; Wallace, G.; Diamond, D. Bio-Sensing Textile Based Patch with Integrated Optical Detection System for Sweat Monitoring. Sens. Actuators B Chem. 2009, 139, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Lewenstam, A. Chapter 1 Clinical Analysis of Blood Gases and Electrolytes by Ion-Selective Sensors. Compr. Anal. Chem. 2007, 49, 5–24. [Google Scholar] [CrossRef]
- Cuartero, M.; Bakker, E. Environmental Water Analysis with Membrane Electrodes. Curr. Opin. Electrochem. 2017, 3, 97–105. [Google Scholar] [CrossRef]
- Slaveykova, V.I.; Wilkinson, K.J.; Ceresa, A.; Pretsch, E. Role of Fulvic Acid on Lead Bioaccumulation by Chlorella Kesslerii. Environ. Sci. Technol. 2003, 37, 1114–1121. [Google Scholar] [CrossRef] [Green Version]
- De Marco, R.; Clarke, G.; Pejcic, B. Ion-Selective Electrode Potentiometry in Environmental Analysis. Electroanalysis 2007, 19, 1987–2001. [Google Scholar] [CrossRef]
- Crespo, G.A. Recent Advances in Ion-Selective Membrane Electrodes for in Situ Environmental Water Analysis. Electrochim. Acta 2017, 245, 1023–1034. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Scida, K.; Stege, P.W.; Haby, G.; Messina, G.A.; García, C.D. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review. Anal. Chim. Acta 2011, 691, 6–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, D.M.; Fernandes, L.C.; Martins, P.M.; García-Astrain, C.; Costa, C.M.; Reguera, J.; Lanceros-Méndez, S. Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Adv. Funct. Mater. 2020, 30, 1909736. [Google Scholar] [CrossRef]
- Lindner, E.; Pendley, B.D. A Tutorial on the Application of Ion-Selective Electrode Potentiometry: An Analytical Method with Unique Qualities, Unexplored Opportunities and Potential Pitfalls; Tutorial. Anal. Chim. Acta 2013, 762, 1–13. [Google Scholar] [CrossRef]
- Düzgün, A.; Zelada-Guillén, G.A.; Crespo, G.A.; Macho, S.; Riu, J.; Rius, F.X. Nanostructured Materials in Potentiometry. Anal. Bioanal. Chem. 2011, 399, 171–181. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Polymer Membrane Ion-Selective Electrodes-What Are the Limits? Electroanalysis 1999, 11, 915–933. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.; Crespo, G.A. All-Solid-State Potentiometric Sensors: A New Wave for in Situ Aquatic Research. Curr. Opin. Electrochem. 2018, 10, 98–106. [Google Scholar] [CrossRef]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef]
- Tóth, K.; Gráf, E.; Horvai, G.; Pungor, E.; Buck, R.P. Plasticized Poly(Vinyl Chloride) Properties and Characteristics of Valinomycin Electrodes. 2. Low-Frequency, Surface-Rate, and Warburg Impedance Characteristics. Anal. Chem. 1986, 58, 2741–2744. [Google Scholar] [CrossRef]
- Suni, I.I. Impedance Methods for Electrochemical Sensors Using Nanomaterials. Trends Anal. Chem. 2008, 27, 604–611. [Google Scholar] [CrossRef]
- Radu, A.; Anastasova-Ivanova, S.; Paczosa-Bator, B.; Danielewski, M.; Bobacka, J.; Lewenstam, A.; Diamond, D. Diagnostic of Functionality of Polymer Membrane—Based Ion Selective Electrodes by Impedance Spectroscopy. Anal. Methods 2010, 2, 1490–1498. [Google Scholar] [CrossRef]
- Fibbioli, M.; Morf, W.E.; Badertscher, M.; De Rooij, N.F.; Pretsch, E. Potential Drifts of Solid-Contacted Ion-Selective Electrodes Due to Zero-Current Ion Fluxes through the Sensor Membrane. Electroanalysis 2000, 12, 1286–1292. [Google Scholar] [CrossRef]
- Jarvis, J.M.; Guzinski, M.; Pendley, B.D.; Lindner, E. Poly(3-Octylthiophene) as Solid Contact for Ion-Selective Electrodes: Contradictions and Possibilities. J. Solid State Electrochem. 2016, 20, 3033–3041. [Google Scholar] [CrossRef]
- Hu, J.; Zou, X.U.; Stein, A.; Bühlmann, P. Ion-Selective Electrodes with Colloid-Imprinted Mesoporous Carbon as Solid Contact. Anal. Chem. 2014, 86, 7111–7118. [Google Scholar] [CrossRef]
- Jiang, Z.; Xi, X.; Qiu, S.; Wu, D.; Tang, W.; Guo, X.; Su, Y.; Liu, R. Ordered Mesoporous Carbon Sphere-Based Solid-Contact Ion-Selective Electrodes. J. Mater. Sci. 2019, 54, 13674–13684. [Google Scholar] [CrossRef]
- Criscuolo, F.; Taurino, I.; Stradolini, F.; Carrara, S.; De Micheli, G. Highly-Stable Li+ Ion-Selective Electrodes Based on Noble Metal Nanostructured Layers as Solid-Contacts. Anal. Chim. Acta 2018, 1027, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Z.; Joyer, M.M.; Fierke, M.A.; Petkovich, N.D.; Stein, A.; Bühlmann, P. Subnanomolar Detection Limit Application of Ion-Selective Electrodes with Three-Dimensionally Ordered Macroporous (3DOM) Carbon Solid Contacts. J. Solid State Electrochem. 2009, 13, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Paczosa-Bator, B.; Piech, R.; Cabaj, L. The Influence of an Intermediate Layer on the Composition Stability of a Polymeric Ion-Selective Membrane. Electrochim. Acta 2012, 85, 104–109. [Google Scholar] [CrossRef]
- Yin, T.; Qin, W. Applications of Nanomaterials in Potentiometric Sensors. Trends Anal. Chem. 2013, 51, 79–86. [Google Scholar] [CrossRef]
- Cadogan, A.; Gao, Z.; Lewenstam, A.; Ivaska, A.; Diamond, D. All-Solid-State Sodium-Selective Electrode Based on a Calixarene Ionophore in a Poly(Vinyl Chloride) Membrane with a Polypyrrole Solid Contact. Anal. Chem. 1992, 64, 2496–2501. [Google Scholar] [CrossRef]
- Sutter, J.; Lindner, E.; Gyurcsányi, R.E.; Pretsch, E. A Polypyrrole-Based Solid-Contact Pb2+-Selective PVC-Membrane Electrode with a Nanomolar Detection Limit. Anal. Bioanal. Chem. 2004, 380, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, R.; Mosayebzadeh, Z. Construction of a New Solid-State U(VI) Ion-Selective Electrode Based on Polypyrrole Conducting Polymer. J. Radioanal. Nucl. Chem. 2014, 299, 1597–1605. [Google Scholar] [CrossRef]
- Vázquez, M.; Bobacka, J.; Ivaska, A.; Lewenstam, A. Influence of Oxygen and Carbon Dioxide on the Electrochemical Stability of Poly(3,4-Ethylenedioxythiophene) Used as Ion-to-Electron Transducer in All-Solid-State Ion-Selective Electrodes. Sens. Actuators B Chem. 2002, 82, 7–13. [Google Scholar] [CrossRef]
- Lindfors, T. Light Sensitivity and Potential Stability of Electrically Conducting Polymers Commonly Used in Solid Contact Ion-Selective Electrodes. J. Solid State Electrochem. 2009, 13, 77–89. [Google Scholar] [CrossRef]
- Mendecki, L.; Fayose, T.; Stockmal, K.A.; Wei, J.; Granados-Focil, S.; McGraw, C.M.; Radu, A. Robust and Ultrasensitive Polymer Membrane-Based Carbonate-Selective Electrodes. Anal. Chem. 2015, 87, 7515–7518. [Google Scholar] [CrossRef]
- Bobacka, J.; McCarrick, M.; Lewenstam, A.; Ivaska, A. All Solid-State Poly(Vinyl Chloride) Membrane Ion-Selective Electrodes with Poly(3-Octylthiophene) Solid Internal Contact. Analyst 1994, 119, 1985–1991. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Plasticizer-Free All-Solid-State Potassium-Selective Electrode Based on Poly(3-Octylthiophene) and Valinomycin. Anal. Chim. Acta 1999, 385, 195–202. [Google Scholar] [CrossRef]
- Chumbimuni-Torres, K.Y.; Rubinova, N.; Radu, A.; Lauro, T.; Bakker, E. Solid Contact Potentiometric Sensors for Trace Level Measurements. Anal. Chem. 2006, 78, 1318–1322. [Google Scholar] [CrossRef] [Green Version]
- Sutter, J.; Radu, A.; Peper, S.; Bakker, E.; Pretsch, E. Solid-Contact Polymeric Membrane Electrodes with Detection Limits in the Subnanomolar Range. Anal. Chim. Acta 2004, 523, 53–59. [Google Scholar] [CrossRef]
- Rubinova, N.; Chumbimuni-Torres, K.; Bakker, E. Solid-Contact Potentiometric Polymer Membrane Microelectrodes for the Detection of Silver Ions at the Femtomole Level. Sens. Actuators B Chem. 2007, 121, 135–141. [Google Scholar] [CrossRef]
- Bomar, E.; Owens, G.; Murray, G. Nitrate Ion Selective Electrode Based on Ion Imprinted Poly(N-Methylpyrrole). Chemosensors 2017, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Bobacka, J.; Lindfors, T.; McCarrick, M.; Ivaska, A.; Lewenstam, A. Single-Piece All-Solid-State Ion-Selective Electrode. Anal. Chem. 1995, 67, 3819–3823. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Yin, T.; Jia, J.; Ding, Q.; Zheng, H.; Chen, C.T.A.; Ye, Y. A Novel All-Solid-State Ammonium Electrode with Polyaniline and Copolymer of Aniline/2,5-Dimethoxyaniline as Transducers. J. Electroanal. Chem. 2015, 741, 87–92. [Google Scholar] [CrossRef]
- Han, W.S.; Lee, Y.H.; Jung, K.J.; Ly, S.Y.; Hong, T.K.; Kim, M.H. Potassium Ion-Selective Polyaniline Solid-Contact Electrodes Based on 4′,4″(5″)-Di-Tert-Butyldibenzo-18-Crown-6-Ether Ionophore. J. Anal. Chem. 2008, 63, 987–993. [Google Scholar] [CrossRef]
- Das, P.; Mondal, S.; Malik, S. Fully Organic Polyaniline Nanotubes as Electrode Material for Durable Supercapacitor. J. Energy Storage 2021, 39, 102662. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, Y.; Wang, K.; Zhao, S.; Zhu, J.; Cheng, H. Two Kinds of Polyaniline Fiber Photo Sensor with Interdigital Electrode and Flexible Hydrogel. J. Appl. Polym. Sci. 2021, 138, 50628. [Google Scholar] [CrossRef]
- Lindfors, T.; Aarnio, H.; Ivaska, A. Potassium-Selective Electrodes with Stable and Geometrically Well-Defined Internal Solid Contact Based on Nanoparticles of Polyaniline and Plasticized Poly(Vinyl Chloride). Anal. Chem. 2007, 79, 8571–8577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yue, H.; Gao, X.; Yao, F.; Chen, H.; Lu, X.; Wang, Y.; Guo, X. A Novel Electrode Material of Polyaniline Nanowire Array/Three-Dimensional Hollow Graphene Balls-Graphene Oxide for Symmetric Supercapacitor. Ionics 2020, 26, 2063–2070. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, Y.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L. Improving the Stability of Pb2+ Ion-Selective Electrodes by Using 3D Polyaniline Nanowire Arrays as the Inner Solid-Contact Transducer. Electrochim. Acta 2021, 384, 138414. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Z.; Zeng, G.; Liu, Y.; Shao, B.; Li, Z.; Liu, Y.; Zhang, W.; He, Q. Polyaniline-Based Adsorbents for Removal of Hexavalent Chromium from Aqueous Solution: A Mini Review. Environ. Sci. Pollut. Res. 2018, 25, 6158–6174. [Google Scholar] [CrossRef]
- Mei-Rong, H.; Guo-Li, G.U.; Yong-Bo, D.; Xiao-Tian, F.U.; Rong-Gui, L. Advanced Solid-Contact Ion Selective Electrode Based on Electrically Conducting Polymers. Chin. J. Anal. Chem. 2012, 40, 1454–1460. [Google Scholar] [CrossRef]
- Bobacka, J. Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18, 7–18. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in Environment: Behavior, Fate, Bioavailability, and Effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Ping, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4665. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Burghard, M. Chemically Functionalized Carbon Nanotubes. Small 2005, 1, 180–192. [Google Scholar] [CrossRef]
- Xie, S.; Li, W.; Pan, Z.; Chang, B.; Sun, L. Mechanical and Physical Properties on Carbon Nanotube. J. Phys. Chem. Solids 2000, 61, 1153–1158. [Google Scholar] [CrossRef]
- Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Dai, H. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res. 2002, 35, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Merkoçi, A. Carbon Nanotubes in Analytical Sciences. Microchim. Acta 2006, 152, 157–174. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Sun, B.; Chen, C. Understanding the Toxicity of Carbon Nanotubes. Acc. Chem. Res. 2013, 46, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M. The Electrochemistry of Carbon Nanotubes: Fundamentals and Applications. Chem. A Eur. J. 2009, 15, 4970–4978. [Google Scholar] [CrossRef]
- Sinnott, S.B.; Andrews, R. Carbon Nanotubes: Synthesis, Properties, and Applications. Crit. Rev. Solid State Mater. Sci. 2001, 26, 145–249. [Google Scholar] [CrossRef]
- Titirici, M.M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; Del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable Carbon Materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef]
- Dumitrescu, I.; Unwin, P.R.; MacPherson, J.V. Electrochemistry at Carbon Nanotubes: Perspective and Issues. Chem. Commun. 2009, 7345, 6886–6901. [Google Scholar] [CrossRef]
- Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. Methods for Carbon Nanotubes Synthesis—Review. J. Mater. Chem. 2011, 21, 15872. [Google Scholar] [CrossRef]
- Sgobba, V.; Guldi, D.M. Carbon Nanotubes—Electronic/Electrochemical Properties and Application for Nanoelectronics and Photonics. Chem. Soc. Rev. 2009, 38, 165–184. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Álvarez-Méndez, J.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. Characterization of Carbon Nanotubes and Analytical Methods for Their Determination in Environmental and Biological Samples: A Review. Anal. Chim. Acta 2015, 853, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Sedeño, P.; Riu, J.; Pingarrón, J.M.; Rius, F.X. Electrochemical Sensing Based on Carbon Nanotubes. Trends Anal. Chem. 2010, 29, 939–953. [Google Scholar] [CrossRef]
- Merkoçi, A.; Pumera, M.; Llopis, X.; Pérez, B.; Del Valle, M.; Alegret, S. New Materials for Electrochemical Sensing VI: Carbon Nanotubes. Trends Anal. Chem. 2005, 24, 826–838. [Google Scholar] [CrossRef]
- Schnorr, J.M.; Swager, T.M. Emerging Applications of Carbon Nanotubes. Chem. Mater. 2011, 23, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Najafi, M.; Maleki, L.; Rafati, A.A. Novel Surfactant Selective Electrochemical Sensors Based on Single Walled Carbon Nanotubes. J. Mol. Liq. 2011, 159, 226–229. [Google Scholar] [CrossRef]
- Crespo, G.A.; Macho, S.; Rius, F.X. Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Anal. Chem. 2008, 80, 1316–1322. [Google Scholar] [CrossRef]
- Ampurdanés, J.; Crespo, G.A.; Maroto, A.; Sarmentero, M.A.; Ballester, P.; Rius, F.X. Determination of Choline and Derivatives with a Solid-Contact Ion-Selective Electrode Based on Octaamide Cavitand and Carbon Nanotubes. Biosens. Bioelectron. 2009, 25, 344–349. [Google Scholar] [CrossRef]
- Parra, E.J.; Crespo, G.A.; Riu, J.; Ruiz, A.; Rius, F.X. Ion-Selective Electrodes Using Multi-Walled Carbon Nanotubes as Ion-to-Electron Transducers for the Detection of Perchlorate. Analyst 2009, 134, 1905–1910. [Google Scholar] [CrossRef]
- Crespo, G.A.; Gugsa, D.; Macho, S.; Rius, F.X. Solid-Contact PH-Selective Electrode Using Multi-Walled Carbon Nanotubes. Anal. Bioanal. Chem. 2009, 395, 2371–2376. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, M.; Montazerozohori, M.; Sahraei, R. Comparison of the Influence of Nanomaterials on Response Properties of Copper Selective Electrodes. J. Ind. Eng. Chem. 2013, 19, 1356–1364. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Eldin, A.G.; Amr, A.E.G.E.; Al-Omar, M.A.; Kamel, A.H.; Khalifa, N.M. Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer. Sensors 2019, 19, 3891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, D.; Anthis, A.H.C.; Ghahraman Afshar, M.; Pankratova, N.; Cuartero, M.; Crespo, G.A.; Bakker, E. All-Solid-State Potentiometric Sensors with a Multiwalled Carbon Nanotube Inner Transducing Layer for Anion Detection in Environmental Samples. Anal. Chem. 2015, 87, 8640–8645. [Google Scholar] [CrossRef]
- Fouskaki, M.; Chaniotakis, N. Fullerene-Based Electrochemical Buffer Layer for Ion-Selective Electrodes. Analyst 2008, 133, 1072–1075. [Google Scholar] [CrossRef]
- Li, J.; Yin, T.; Qin, W. An All-Solid-State Polymeric Membrane Pb2+-Selective Electrode with Bimodal Pore C60 as Solid Contact. Anal. Chim. Acta 2015, 876, 49–54. [Google Scholar] [CrossRef]
- Jiang, C.; Yao, Y.; Cai, Y.; Ping, J. All-Solid-State Potentiometric Sensor Using Single-Walled Carbon Nanohorns as Transducer. Sens. Actuators B Chem. 2019, 283, 284–289. [Google Scholar] [CrossRef]
- Li, F.; Ye, J.; Zhou, M.; Gan, S.; Zhang, Q.; Han, D.; Niu, L. All-Solid-State Potassium-Selective Electrode Using Graphene as the Solid Contact. Analyst 2012, 137, 618–623. [Google Scholar] [CrossRef]
- Boeva, Z.A.; Lindfors, T. Few-Layer Graphene and Polyaniline Composite as Ion-to-Electron Transducer in Silicone Rubber Solid-Contact Ion-Selective Electrodes. Sens. Actuators B Chem. 2016, 224, 624–631. [Google Scholar] [CrossRef]
- Paczosa-Bator, B. All-Solid-State Selective Electrodes Using Carbon Black. Talanta 2012, 93, 424–427. [Google Scholar] [CrossRef]
- Fierke, M.A.; Lai, C.Z.; Bühlmann, P.; Stein, A. Effects of Architecture and Surface Chemistry of Three-Dimensionally Ordered Macroporous Carbon Solid Contacts on Performance of Ion-Selective Electrodes. Anal. Chem. 2010, 82, 680–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ping, J.; Wang, Y.; Wu, J.; Ying, Y. Development of an All-Solid-State Potassium Ion-Selective Electrode Using Graphene as the Solid-Contact Transducer. Electrochem. Commun. 2011, 13, 1529–1532. [Google Scholar] [CrossRef]
- Ping, J.; Wang, Y.; Ying, Y.; Wu, J. Application of Electrochemically Reduced Graphene Oxide on Screen-Printed Ion-Selective Electrode. Anal. Chem. 2012, 84, 3473–3479. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Woźnica, E.; Wójcik, M.M.; Wojciechowski, M.; Mieczkowski, J.; Bulska, E.; Maksymiuk, K.; Michalska, A. Dithizone Modified Gold Nanoparticles Films for Potentiometric Sensing. Anal. Chem. 2012, 84, 4437–4442. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, M.; Wang, X.; Yang, Q.; Wang, M.; Liu, G.; Yao, L. An All-Solid-State Nitrate Ion-Selective Electrode with Nanohybrids Composite Films for in-Situ Soil Nutrient Monitoring. Sensors 2020, 20, 2270. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, E.; Wójcik, M.; Kisiel, A.; Mieczkowski, J.; Michalska, A. Gold Nanoparticles Solid Contact for Ion-Selective Electrodes of Highly Stable Potential Readings. Talanta 2011, 85, 1986–1989. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Z.; Liu, P. An All-Solid-State NO3- Ion-Selective Electrode with Gold Nanoparticles Solid Contact Layer and Molecularly Imprinted Polymer Membrane. PLoS ONE 2020, 15, e0240173. [Google Scholar] [CrossRef]
- Yin, T.; Han, T.; Li, C.; Qin, W.; Bobacka, J. Real-Time Monitoring of the Dissolution of Silver Nanoparticles by Using a Solid-Contact Ag+-Selective Electrode. Anal. Chim. Acta 2020, 1101, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Paczosa-Bator, B.; Cabaj, L.; Piech, R.; Skupień, K. Platinum Nanoparticles Intermediate Layer in Solid-State Selective Electrodes. Analyst 2012, 137, 5272–5277. [Google Scholar] [CrossRef]
- Paczosa-Bator, B.; Piech, R.; Wardak, C.; Cabaj, L. Application of Graphene Supporting Platinum Nanoparticles Layer in Electrochemical Sensors with Potentiometric and Voltammetric Detection. Ionics 2018, 24, 2455–2464. [Google Scholar] [CrossRef]
- Jaworska, E.; Kisiel, A.; Maksymiuk, K.; Michalska, A. Lowering the Resistivity of Polyacrylate Ion-Selective Membranes by Platinum Nanoparticles Addition. Anal. Chem. 2011, 83, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Khun, K.; Ibupoto, Z.H.; Willander, M. Urea Assisted Synthesis of Flower like CuO Nanostructures and Their Chemical Sensing Application for the Determination of Cadmium Ions. Electroanalysis 2013, 25, 1425–1432. [Google Scholar] [CrossRef]
- Lenar, N.; Piech, R.; Paczosa-Bator, B. Hydrous Cerium Dioxide-Based Materials as Solid-Contact Layers in Potassium-Selective Electrodes. Membranes 2022, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Lenar, N.; Paczosa-Bator, B.; Piech, R. Optimization of Ruthenium Dioxide Solid Contact in Ion-Selective Electrodes. Membranes 2020, 10, 182. [Google Scholar] [CrossRef]
- Lenar, N.; Piech, R.; Wyrwa, J.; Paczosa-Bator, B. Potassium-Selective Solid-Contact Electrode with High-Capacitance Hydrous Iridium Dioxide in the Transduction Layer. Membranes 2021, 11, 259. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Yan, R.; Gao, Y.; Wang, P. Bimetallic AuCu Nanoparticles Coupled with Multi-Walled Carbon Nanotubes as Ion-to-Electron Transducers in Solid-Contact Potentiometric Sensors. Electrochim. Acta 2020, 331, 135370. [Google Scholar] [CrossRef]
- Gupta, D.K.; Neupane, S.; Yadav, H.C.; Subedi, V.; Singh, S.; Yadav, R.J.; Das, A.K.; Yadav, B.; Nakarmi, K.B.; Karki, N.; et al. Trace Level Monitoring of Cu(II) Ion Using CuS Particles Based Membrane Electrochemical Sensor. Heliyon 2021, 7, e07167. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Qi, L.; Jiang, T.; Liang, R.; Qin, W. Polymeric Membrane Ion-Selective Electrodes with Anti-Biofouling Properties by Surface Modification of Silver Nanoparticles. Sens. Actuators B Chem. 2021, 328, 129014. [Google Scholar] [CrossRef]
- Fog, A.; Buck, R.P. Electronic Semiconducting Oxides as PH Sensors. Sens. Actuators 1984, 5, 137–146. [Google Scholar] [CrossRef]
- Omidi, M.; Hossein Rokni, D.T.; Milani, A.S.; Seethaler, R.J.; Arasteh, R. Prediction of the Mechanical Characteristics of Multi-Walled Carbon Nanotube/Epoxy Composites Using a New Form of the Rule of Mixtures. Carbon 2010, 48, 3218–3228. [Google Scholar] [CrossRef]
- Jackson, E.M.; Laibinis, P.E.; Collins, W.E.; Ueda, A.; Wingard, C.D.; Penn, B. Development and Thermal Properties of Carbon Nanotube-Polymer Composites. Compos. Part B Eng. 2016, 89, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Strakhov, I.S.; Rodnaya, A.I.; Mezhuev, Y.O.; Korshak, Y.V.; Vagramyan, T.A. Enhancement of the Strength of a Composite Material Based on ED-20 Epoxy Resin by Reinforcement with a Carbon Fiber Modified by Electrochemical Deposition of Poly(o-Phenylenediamine). Russ. J. Appl. Chem. 2014, 87, 1918–1922. [Google Scholar] [CrossRef]
- Shahnazi, A.; Nabid, M.R.; Sedghi, R. Synthesis of Surface Molecularly Imprinted Poly-o-Phenylenediamine/TiO2/Carbon Nanodots with a Highly Enhanced Selective Photocatalytic Degradation of Pendimethalin Herbicide under Visible Light. React. Funct. Polym. 2020, 151, 104580. [Google Scholar] [CrossRef]
- Baibarac, M.; Daescu, M.; Matei, E.; Nastac, D.; Cramariuc, O. Optical Properties of Composites Based on Poly (o-Phenylenediamine), Poly (Vinylenefluoride) and Double-Wall Carbon Nanotubes. Int. J. Mol. Sci. 2021, 22, 8260. [Google Scholar] [CrossRef]
- Ekinci, E.; Erdogdu, G.; Karagozler, A.E. Preparation, Optimization, and Voltammetric Characteristics of Poly (o-Phenylenediamine) Film as a Dopamine-Selective Polymeric Membrane. J. Appl. Crystallogr. 2001, 79, 327–332. [Google Scholar] [CrossRef]
- Khan, A.A.; Paquiza, L. Synthesis and Characterization of in Situ Polymerized Poly(Methyl Methacrylate)-Cerium Molybdate Nanocomposite for Electroanalytical Application. J. Appl. Polym. Sci. 2013, 127, 3737–3748. [Google Scholar] [CrossRef]
- Arfin, T.; Tarannum, A. Rapid Determination of Lead Ions Using Polyaniline-Zirconium(IV) Iodate -Based Ion Selective Electrode. J. Environ. Chem. Eng. 2019, 7, 102811. [Google Scholar] [CrossRef]
- Kaur, K.; Aulakh, J.S.; Malik, A.K. Fabrication of Zn(II) Selective Polyvinyl Chloride Membrane Electrode Based on N,N’-Bis(1-Hydroxynaphthalene-2-Carbaldehyde)-o-Phenylenediamine as an Ionophore: Experimental and Theoretical Approaches. J. Anal. Chem. 2019, 74, 134–142. [Google Scholar] [CrossRef]
- Mirzaei, M.; Pili, H.B. Potentiometric Determination of Cadmium Using Coated Platinum and PVC Membrane Sensors Based on N,N′-Bis(Salicylaldehyde)Phenylenediamine (Salophen). J. Anal. Chem. 2015, 70, 731–737. [Google Scholar] [CrossRef]
- Mousavi, Z.; Bobacka, J.; Lewenstam, A.; Ivaska, A. Poly(3,4-Ethylenedioxythiophene) (PEDOT) Doped with Carbon Nanotubes as Ion-to-Electron Transducer in Polymer Membrane-Based Potassium Ion-Selective Electrodes. J. Electroanal. Chem. 2009, 633, 246–252. [Google Scholar] [CrossRef]
- Abbaspour, A.; Tashkhourian, J.; Ahmadpour, S.; Mirahmadi, E.; Sharghi, H.; Khalifeh, R.; Shahriyari, M.R. Construction of a New Selective Coated Disk Electrode for Ag (I) Based on Modified Polypyrrole-Carbon Nanotubes Composite with New Lariat Ether. Mater. Sci. Eng. C 2014, 34, 326–333. [Google Scholar] [CrossRef]
- Athavale, R.; Kokorite, I.; Dinkel, C.; Bakker, E.; Wehrli, B.; Crespo, G.A.; Brand, A. In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes. Anal. Chem. 2015, 87, 11990–11997. [Google Scholar] [CrossRef]
- Paczosa-Bator, B. Ion-Selective Electrodes with Superhydrophobic Polymer/Carbon Nanocomposites as Solid Contact. Carbon 2015, 95, 879–887. [Google Scholar] [CrossRef]
- Topcu, C.; Lacin, G.; Yilmaz, V.; Coldur, F.; Caglar, B.; Cubuk, O.; Isildak, I. Electrochemical Determination of Copper(II) in Water Samples Using a Novel Ion-Selective Electrode Based on a Graphite Oxide–Imprinted Polymer Composite. Anal. Lett. 2018, 51, 1890–1910. [Google Scholar] [CrossRef]
- Kałuza, D.; Jaworska, E.; Mazur, M.; Maksymiuk, K.; Michalska, A. Multiwalled Carbon Nanotubes-Poly(3-Octylthiophene-2,5-Diyl) Nanocomposite Transducer for Ion-Selective Electrodes: Raman Spectroscopy Insight into the Transducer/Membrane Interface. Anal. Chem. 2019, 91, 9010–9017. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Gao, Y.; Wang, P. A General Approach to One-Step Fabrication of Single-Piece Nanocomposite Membrane Based Pb2+-Selective Electrodes. Sens. Actuators B Chem. 2019, 281, 705–712. [Google Scholar] [CrossRef]
- Ivanišević, I.; Milardović, S.; Ressler, A.; Kassal, P. Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors 2021, 9, 333. [Google Scholar] [CrossRef]
- Kumar, P. All-Solid-State CNT Composite Calcium(II)-Selective Potentiometric Sensor Based on 4,7-Diaza-2,3,8,9-Dibenzo-15-Crown-5 Ionophore. Anal. Bioanal. Electrochem. 2022, 14, 179–190. [Google Scholar]
- Pietrzak, K.; Morawska, K.; Malinowski, S.; Wardak, C. Chloride Ion-Selective Electrode with Solid-Contact Based on Polyaniline Nanofibers and Multiwalled Carbon Nanotubes Nanocomposite. Membranes 2022, 12, 1150. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Zhou, C.; Sun, C. Determination of Cesium Ions in Environmental Water Samples with a Magnetic Multi-Walled Carbon Nanotube Imprinted Potentiometric Sensor. RSC Adv. 2021, 11, 10075–10082. [Google Scholar] [CrossRef]
- Niemiec, B.; Piech, R.; Paczosa-Bator, B. Modification of Carbon Nanomaterials by Association with Poly(3-Octylthiophene-2,5-Diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes. Membranes 2022, 12, 1275. [Google Scholar] [CrossRef]
- Lenar, N.; Piech, R.; Paczosa-Bator, B. Carbon Nanomaterials—Poly(3-Octylthiophene-2,5-Diyl)—Hydrous Iridium Dioxide Triple Composite Materials as Superhydrophobic Layers for Ion-Selective Electrodes. J. Electrochem. Soc. 2022, 169, 127508. [Google Scholar] [CrossRef]
- Xie, L.; Qin, Y.; Chen, H.Y. Preparation of Solid Contact Potentiometric Sensors with Self-Plasticizing Triblock Polymer and Ionic Liquid-Polymer Composites. Sens. Actuators B Chem. 2013, 186, 321–326. [Google Scholar] [CrossRef]
- Vanamo, U.; Bobacka, J. Electrochemical Control of the Standard Potential of Solid-Contact Ion-Selective Electrodes Having a Conducting Polymer as Ion-to-Electron Transducer. Electrochim. Acta 2014, 122, 316–321. [Google Scholar] [CrossRef]
- Ghosh, T.; Chung, H.J.; Rieger, J. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite. Sensors 2017, 17, 2536. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; He, N.; Kumar, N.; Wang, N.X.; Bobacka, J.; Ivaska, A. Electrosynthesized Polypyrrole/Zeolite Composites as Solid Contact in Potassium Ion-Selective Electrode. Electrochim. Acta 2017, 228, 66–75. [Google Scholar] [CrossRef]
- Pięk, M.; Paczosa-Bator, B.; Smajdor, J.; Piech, R. Molecular Organic Materials Intermediate Layers Modified with Carbon Black in Potentiometric Sensors for Chloride Determination. Electrochim. Acta 2018, 283, 1753–1762. [Google Scholar] [CrossRef]
- Lenar, N.; Paczosa-Bator, B.; Piech, R.; Królicka, A. Poly(3-Octylthiophene-2,5-Diyl)—Nanosized Ruthenium Dioxide Composite Material as Solid-Contact Layer in Polymer Membrane-Based K+-Selective Electrodes. Electrochim. Acta 2019, 322, 134718. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, C.; Zhao, Y.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L. A Solid-Contact Pb2+ -Selective Electrode Based on a Hydrophobic Polyaniline Microfiber Film as the Ion-to-Electron Transducer. Synth. Met. 2019, 248, 94–101. [Google Scholar] [CrossRef]
- Ali, M.A.; Wang, X.; Chen, Y.; Jiao, Y.; Mahal, N.K.; Moru, S.; Castellano, M.J.; Schnable, J.C.; Schnable, P.S.; Dong, L. Continuous Monitoring of Soil Nitrate Using a Miniature Sensor with Poly(3-Octyl-Thiophene) and Molybdenum Disulfide Nanocomposite. ACS Appl. Mater. Interfaces 2019, 11, 29195–29206. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Jiang, W.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L. Stable Pb2+ Ion-Selective Electrodes Based on Polyaniline-TiO2 Solid Contacts. Anal. Chim. Acta 2020, 1094, 26–33. [Google Scholar] [CrossRef]
- Ivanko, I.; Lindfors, T.; Emanuelsson, R.; Sjödin, M. Conjugated Redox Polymer with Poly(3,4-Ethylenedioxythiophene) Backbone and Hydroquinone Pendant Groups as the Solid Contact in Potassium-Selective Electrodes. Sens. Actuators B Chem. 2021, 329, 129231. [Google Scholar] [CrossRef]
- Lenar, N.; Piech, R.; Paczosa-Bator, B. Potentiometric Sensor with High Capacity Composite Composed of Ruthenium Dioxide and Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate. Materials 2021, 14, 1891. [Google Scholar] [CrossRef]
- Zeng, X.; Jiang, W.; Waterhouse, G.I.N.; Jiang, X.; Zhang, Z.; Yu, L. Stable Pb(II) Ion-Selective Electrodes with a Low Detection Limit Using Silver Nanoparticles/Polyaniline as the Solid Contact. Microchim. Acta 2021, 188, 393. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Akatsuka, T.; Abe, Y.; Komaba, S. Design of All-Solid-State Chloride and Nitrate Ion-Selective Electrodes Using Anion Insertion Materials of Electrodeposited Poly(Allylamine)-MnO2 Composite. Electrochim. Acta 2021, 389, 138749. [Google Scholar] [CrossRef]
- Bahro, C.; Goswami, S.; Gernhart, S.; Koley, D. Calibration-Free Solid-State Ion-Selective Electrode Based on a Polarized PEDOT/PEDOT-S-Doped Copolymer as Back Contact. Anal. Chem. 2022, 94, 8302–8308. [Google Scholar] [CrossRef] [PubMed]
- Neo, Z.H.; Seah, G.E.K.K.; Ng, S.H.; Safanama, D.; Seng, D.H.L.; Goh, S.S. Solution-Printable PEDOT Solid-Contact for Nitrate-Selective Electrodes: Enhanced Selectivity from Anion Dopant Exchange. Anal. Chem. 2022, 94, 15956–15963. [Google Scholar] [CrossRef] [PubMed]
- Paczosa-Bator, B.; Cabaj, L.; Piech, R.; Skupień, K. Potentiometric Sensors with Carbon Black Supporting Platinum Nanoparticles. Anal. Chem. 2013, 85, 10255–10261. [Google Scholar] [CrossRef]
- Liang, R.; Yin, T.; Qin, W. A Simple Approach for Fabricating Solid-Contact Ion-Selective Electrodes Using Nanomaterials as Transducers. Anal. Chim. Acta 2015, 853, 291–296. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, T.; Zhu, J.; Qin, Y.; Jiang, D. Polymer-Multiwall Carbon Nanotubes Composites for Durable All Solid-Contact H2PO4--Selective Electrodes. Sens. Actuators B Chem. 2015, 219, 100–104. [Google Scholar] [CrossRef]
- Piȩk, M.; Piech, R.; Paczosa-Bator, B. All-Solid-State Nitrate Selective Electrode with Graphene/Tetrathiafulvalene Nanocomposite as High Redox and Double Layer Capacitance Solid Contact. Electrochim. Acta 2016, 210, 407–414. [Google Scholar] [CrossRef]
- Pięk, M.; Fendrych, K.; Smajdor, J.; Piech, R.; Paczosa-Bator, B. High Selective Potentiometric Sensor for Determination of Nanomolar Con-Centration of Cu(II) Using a Polymeric Electrode Modified by a Graphene/7,7,8,8-Tetracyanoquinodimethane Nanoparticles. Talanta 2017, 170, 41–48. [Google Scholar] [CrossRef]
- Li, J.; Yin, T.; Qin, W. An Effective Solid Contact for an All-Solid-State Polymeric Membrane Cd2+-Selective Electrode: Three-Dimensional Porous Graphene-Mesoporous Platinum Nanoparticle Composite. Sens. Actuators B Chem. 2017, 239, 438–446. [Google Scholar] [CrossRef]
- Pietrzak, K.; Wardak, C. Comparative Study of Nitrate All Solid State Ion-Selective Electrode Based on Multiwalled Carbon Nanotubes-Ionic Liquid Nanocomposite. Sens. Actuators B Chem. 2021, 348, 130720. [Google Scholar] [CrossRef]
- Wardak, C.; Pietrzak, K.; Grabarczyk, M. Ionic Liquid-Multiwalled Carbon Nanotubes Nanocomposite Based All Solid State Ion-Selective Electrode for the Determination of Copper in Water Samples. Water 2021, 13, 2869. [Google Scholar] [CrossRef]
- Lenar, N.; Piech, R.; Paczosa-Bator, B. High Capacity Nanocomposite Layers Based on Nanoparticles of Carbon Materials and Ruthenium Dioxide for Potassium Sensitive Electrode. Materials 2021, 14, 1308. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, N.A. Novel Potentiometric Solid-Contact Electrode for the Determination of Fe2+ Ions via MWCNTs-Gemifloxacin Composite. Electroanalysis 2021, 33, 1283–1289. [Google Scholar] [CrossRef]
- Niemiec, B.; Zambrzycki, M.; Piech, R.; Wardak, C.; Paczosa-Bator, B. Hierarchical Nanocomposites Electrospun Carbon Nanofibers/Carbon Nanotubes as a Structural Element of Potentiometric Sensors. Materials 2022, 15, 4803. [Google Scholar] [CrossRef]
- Ozer, T. Carbon Composite Thermoplastic Electrodes Integrated with Mini-Printed Circuit Board for Wireless Detection of Calcium Ions. Anal. Sci. 2022, 38, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Guan, M.; Xia, L.; Chen, Y.; Mai, J.; Zhao, C.; Liao, C. Highly Stretchable and Robust Electrochemical Sensor Based on 3D Graphene Oxide-CNT Composite for Detecting Ammonium in Sweat. Biosensors 2023, 13, 409. [Google Scholar] [CrossRef]
- Lim, H.R.; Lee, Y.; Jones, K.A.; Kwon, Y.T.; Kwon, S.; Mahmood, M.; Lee, S.M.; Yeo, W.H. All-in-One, Wireless, Fully Flexible Sodium Sensor System with Integrated Au/CNT/Au Nanocomposites. Sens. Actuators B Chem. 2021, 331, 129416. [Google Scholar] [CrossRef]
- Gallego-Cerda, S.D.; Chanona-Perez, J.J.; Hernandez-Varela, J.D.; Lopez, M.C. Development of a Facile Aerogel-based Ion-selective Electrode Using Cellulose and Carbon Nanotube as Transducer Materials for Potentiometric Applications. J. Appl. Polym. Sci. 2023, 140, e53891. [Google Scholar] [CrossRef]
- Wardak, C.; Morawska, K.; Paczosa-Bator, B.; Grabarczyk, M. Improved Lead Sensing Using a Solid-Contact Ion-Selective Electrode with Polymeric Membrane Modified with Carbon Nanofibers and Ionic Liquid Nanocomposite. Materials 2023, 16, 1003. [Google Scholar] [CrossRef]
- Wardak, C.; Pietrzak, K.; Morawska, K. Nanocomposite of Copper Oxide Nanoparticles and Multi-Walled Carbon Nanotubes as a Solid Contact of a Copper-Sensitive Ion-Selective Electrode: Intermediate Layer or Membrane Component–Comparative Studies. Appl. Nanosci. 2023, 13, 409. [Google Scholar] [CrossRef]
- Coutinho, C.F.B.; Muxel, A.A.; Rocha, C.G.; De Jesus, D.A.; Alfaya, R.V.S.; Almeida, F.A.S.; Gushikemb, Y.; Alfaya, A.A.S. Ammonium Ion Sensor Based on SiO2/ZrO2/Phosphate- NH4+ Composite for Quantification of Ammonium Ions in Natural Waters. J. Braz. Chem. Soc. 2007, 18, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Criscuolo, F.; Lobello, L.; Taurino, I.; Demarchi, D.; Carrara, S.; De Micheli, G. Mixed Gold and Platinum Nanostructured Layers for All-Solid-State Ion Sensors. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Pięk, M.; Piech, R.; Paczosa-Bator, B. TTF-TCNQ Solid Contact Layer in All-Solid-State Ion-Selective Electrodes for Potassium or Nitrate Determination. J. Electrochem. Soc. 2018, 165, B60–B65. [Google Scholar] [CrossRef]
- Mendecki, L.; Mirica, K.A. Conductive Metal-Organic Frameworks as Ion-to-Electron Transducers in Potentiometric Sensors. ACS Appl. Mater. Interfaces 2018, 10, 19248–19257. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, T.; Song, C.; Fan, A.; Zhu, N.; Sun, B.; Yang, C. Using MoS2/Fe3O4 as Ion-Electron Transduction Layer to Manufacture All-Solid-State Ion-Selective Electrode for Determination of Serum Potassium. Chemosensors 2021, 9, 155. [Google Scholar] [CrossRef]
- Sabeti Ghahfarokhi, F.; Ghaemi, A.; Mohammadzadeh Kakhki, R. Novel Polymeric Sensor for Ultra-Trace Determination of Cerium(III) Based on CoNiFe2O4 Nanocomposite. Inorg. Nano-Met. Chem. 2023; Ahead of print. 1–8. [Google Scholar] [CrossRef]
Ion | Ionophore | Solid Contact | Slope, mVdec–1 | LoD, M | Linearity Range, M | pH Range | Potential Stability | Ref. |
---|---|---|---|---|---|---|---|---|
NH4+ | SiO2/ZrO2/phosphate-NH4+ composite | graphite powder | 31.3 | 1.6 × 10−7 | 7.7 × 10−7–4.0 × 10−2 | 6.0–7.0 | - | [180] |
NH4+ | ammonium ionophore I | CNT−PVC composite MMA−DMA copolymer | 50.9 50.7 | 2.6 × 10−7 2.2 × 10−7 | 1.0 × 10−6–1.0 × 10−3 | - | <1000 µVh−1 (i = 0) 3600 µVh−1 (i = 0) | [137] |
NH4+ | ammonium ionophore I | CPANI | 54.2 | 1.0 × 10−6 | 1.0 × 10−4–1.0 × 10−1 | 2.6–10.1 | - | [58] |
NH4+ | ammonium ionophore I | graphite–PVB composite | 57.3 | 4.8 × 10−6 | 1.0 × 10−5–1.0 × 10−1 | 2.5–8.5 | - | [142] |
NH4+ | ammonium ionophore I | 3D graphene–CNT | 59.6 | 1.0 × 10−6 | 1.0 × 10−6–1.0 × 10−1 | - | - | [175] |
Li+ | lithium ionophore VI | AuNanocorals/PtNanoflower | 60.4 | ~1.0 × 10−5 | 1.3 × 10−5–1.0 × 10−1 | - | 5.2 µVs−1 (i ± 5 nA) | [181] |
Na+ | Na(X) | SBS-BMImPF6 | 58.2 | - | 1.0 × 10−6–1.0 × 10−1 | - | - | [148] |
Na+ | sodium ionophore X | Au/CNT/Au | 55.5 | - | 1.0 × 10−3–1 | - | - | [176] |
Na+ | sodium ionophore VI | ChPBN nanocomposite | 52.4 | - | 10−4–1 | - | 1.3 µVh−1 (i = 0), 288 µVs−1 (i = ± 100 nA) | [150] |
K+ | potassium ionophore I | PEDOT(CNT) composite | 57.1 | - | 1.0 × 10−6–1.0 × 10−1 | - | 12.0 µVs−1 (i ± 1 nA) | [135] |
K+ | potassium ionophore I | SBS-BMImPF6 | 52.2 | - | 1.0 × 10−6–1.0 × 10−1 | - | - | [148] |
K+ | potassium ionophore I | PEDOT(PSS) | 60.1 | - | 1.0 × 10−5–1.0 × 10−1 | - | 690 µVh−1 (i = 0) | [149] |
K+ | potassium ionophore I | CB-FP | 59.1 | 2.0 × 10−7 | 3.2 × 10−7–1.0 × 10−1 | - | 20.9 µVs−1 (i = ± 1 µA) | [138] |
K+ | potassium ionophore I | PPy/H-ZSM-5 | 54.2 | 7.1 × 10−6 | 1.0 × 10−5–1.0 × 10−2 | - | 130 µVh−1 (i = 0) | [151] |
K+ | potassium ionophore I | TTF-TCNQ | 58.5 | 4.0 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | - | 42.2 µVs−1 (i = ± 10 nA) | [182] |
K+ | potassium ionophore I potassium ionophore II | MOFs | 58.2 54.1 | 5.0 × 10−7 6.8 × 10−6 | 1.0 × 10−6–3.2 × 10−3 3.2 × 10−5–3.2 × 10−2 | - | 15.0 µVs−1 (i ± 1 nA) | [183] |
K+ | potassium ionophore I | PtNPs-GR | 59.1 | 3.2 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | - | - | [113] |
K+ | potassium ionophore I | MWCNTs:POT nanocomposite | 56.3 | 1.6 × 10−7 | 10−6–10−1 | - | - | [140] |
K+ | potassium ionophore I | RuO2 + POT nanocomposite | 58.6 | 1.3 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | - | 86 µVs−1 (i ± 100 nA) | [153] |
K+ | potassium ionophore I | PEDOT-HQ | 60.9 | 2.0 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | - | 100 µVh−1(i = 0) | [157] |
K+ | potassium ionophore I | GR + RuO2 CB + RuO2 NT + RuO2 | 58.95 58.03 58.25 | - | 10−6–10−1 | - | 120 µVs−1 (i = ± 100 nA) 240 µVs−1 (i = ± 100 nA) 200 µVs−1 (i = ± 100 nA) | [171] |
K+ | potassium ionophore I | MoS2/Fe3O4 nanocomposite | 55.2 | 6.3 × 10−6 | 1.0 × 10−5–1.0 × 10−1 | - | 2.9 µVs−1 (i = ± 1 nA) | [184] |
K+ | potassium ionophore I | RuO2-PEDOT:PSS | 58.9 | - | 1.0 × 10−6–1.0 × 10−1 | 3.5–10.0 | 14.3 µVs−1 (i ± 100 nA) 77 µVh−1 (i = 0) | [158] |
K+ | potassium ionophore I | hCeO2 hCeO2 + NTs hCeO2 + POT nanocomposites | 55.3 58.9 58.2 | - | 1.0 × 10−5–1.0 × 10−1 1.0 × 10−6–1.0 × 10−1 1.0 × 10−6–1.0 × 10−1 | 2.0–11.5 | 86 µVh−1 (i = 0), 6000 µVs−1 (i = ± 10 nA) 95 µVh−1 (i = 0), 2300 µVs−1 (i = ± 100 nA) 240 µVh−1 (i = 0), 2700 µVs−1 (i = ± 100 nA) | [116] |
K+ | potassium ionophore I | eCNF, eCNF-Co eCNF/CNT-NiCo with POT nanocomposites | 59.7 59.9 59.8 | 6.3 × 10−7 1.3 × 10−6 3.2 × 10−6 | 10−6–10−1 10−5–10−1 10−5–10−1 | - | 30 µVh−1 (i = 0), 30 µVh−1 (i = 0), 60 µVh−1 (i = 0) | [146] |
K+ | potassium ionophore I | EDOT-S | 57.2 | 1.7 × 10−6 | 1.0 × 10−5–1.0 × 10−1 | - | - | [161] |
K+ | potassium ionophore I | CNT/POT/hIrO2 CB/POT/hIrO2 | 57.3 58.8 | - | 1.0 × 10−6–1.0 × 10−1 | 3.5 –10.5 | 43 µVh−1 (i = 0) 79 µVh−1 (i = 0) | [147] |
K+ | potassium ionophore I | eCNF/CNT[HD]-NiCo | 59.4 | 5.0 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | 2.0–10.5 | 60 µVh−1 (i = 0) 31 µVs−1 (i ± 10 nA) | [173] |
K+ | potassium ionophore I | CA | 52.0 | 8.5 × 10−3 | 1.0 × 10−4–1.0 × 10−1 | - | - | [177] |
Cs+ | MMWCNTs@Cs-IIP composite | 59.5 | 5.0 × 10−8 | 1.0 × 10−7–1.0 × 10−4 | 4.0–6.5 | - | [145] | |
Ag+ | lariat ether | MWCNTs–PVC composite | 59.4 | 9.3 × 10−8 | 1.0 × 10−7–1.0 × 10−1 | 1.6–7.7 | - | [136] |
Ca2+ | AU-1 | SBS-BMImPF6 | 29.8 | - | 1.0 × 10−6–1.0 × 10−1 | - | - | [148] |
Ca2+ | calcium ionophore I | PANI–graphene composite | 28.7 | 5.0 × 10−8 | 3.0 × 10−7–1.0 × 10−4 | - | 5.2 µVs−1 (i ± 1 nA) | [101] |
Ca2+ | calcium ionophore IV | oAuCuNPs-MWCNTs | 29.0 | 6.0 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | - | 15 µVh−1 (i = 0) | [119] |
Ca2+ | calcium ionophore II | TPEs + carbon black | 31.2 | 1.0 × 10−5 | 1.0 × 10−4–1.0 × 10−1 | 3.0–9.0 | 30.0 µVs−1 (i ± 1 nA) | [174] |
Ca2+ | calcium ionophore II | EDOT-S | 28.9 | 4.5 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | - | 300 μVh–1(i = 0) | [161] |
Ca2+ | 4,7-diaza-2,3,8,9-dibenzo-15- crown-5 | MWCNT in PVC | 28.8 | 9.1 × 10−8 | 1.6 × 10−7–1.0 × 10−1 | 3.5–7.0 | - | [143] |
Cu2+ | copper(II) ionophore IV | SBS-BMImPF6 | 28.8 | - | 1.0 × 10−6–1.0 × 10−1 | - | - | [148] |
Cu2+ | copper(II) ionophore IV | ETH 500/SWCNTs ETH 500/graphene | - | 4.0 × 10−9 | 1.0 × 10−8–1.0 × 10−4 | - | - | [164] |
Cu2+ | copper(II) ionophore IV | graphene/TCNQ,TCNQ-Cu nanocomposite | 29.9 | 2.5 × 10−9 | 1.0 × 10−8–1.0 × 10−2 | 4.0–6.0 | 25.2 µVs−1 (i = ± 10 nA) | [167] |
Cu2+ | copper(II)-ion-imprinted polymer–graphite oxide nanocomposite | 26.1 | 4.0 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | 4.0–8.0 | - | [139] | |
Cu2+ | copper(II) ionophore IV | MWCNTs:BMImPF6 | 29.8 | 3.3 × 10−8 | 1.0 × 10−7 –1.0 × 10−2 | 2.5– 6.0 | 2760 µVh−1 (i = 0) | [170] |
Cu2+ | copper(II) ionophore IV | CuONPs-MWCNTs nanocomposite | 30.1 | 1.5 × 10−8 | 5.0 × 10−8–3.0 × 10−2 | 4.0–6.0 | 132.0 µV h−1 (i = 0) | [179] |
Cd2+ | cadmium ionophore I | 3D PGR-MPN | 29.6 | 1.6 × 10−. | 1.0 × 10−8–3.0 × 10−4 | - | 1.6 µVs−1 (i ± 1 nA) | [168] |
Ce3+ | benzo-15-crown-5 | CoNiFe2O4 nanocomposite | 17.5 | 7.0 × 10−9 | 1.0 × 10−8–1.0 × 10−1 | 2.0–10.0 | - | [185] |
Fe2+ | MWCNTs-Gemi composite | graphite powder | 30.4 | 4.8 × 10−9 | 1.0 × 10−8–1.0 × 10−2 | 3.0–8.0 | - | [172] |
Pb2+ | lead ionophore IV | SBS-BMImPF6 | 28.3 | – | 1.0 × 10−6–1.0 × 10−2 | - | − | [148] |
Pb2+ | lead ionophore IV | ETH 500/SWCNTs ETH 500/graphene | - | 1.8 × 10−9 | 1.0 × 10−9–1.0 × 10−4 | - | - | [164] |
Pb2+ | lead ionophore IV | MWCNTs | 29.0 | 4.0 × 10−10 | 2.0 × 10−3–2.0 × 10−9 | 2.0–4.8 | 19.8 µVs−1 (i = ± 1 nA) | [141] |
Pb2+ | lead ionophore IV | e-PANI-PS | 29.1 | 5.0 × 10−9 | 1.0 × 10−8–1.0 × 10−3 | - | 12.3 µVs−1 (i = ± 1 nA) | [154] |
Pb2+ | lead ionophore IV | PANI-TiO2 | 29.0 | 7.9 × 10−10 | 1.0 × 10−9–1.0 × 10−3 | - | 122.6 µVs−1 (i = ± 1 nA) | [156] |
Pb2+ | lead ionophore IV | Ag@PANI | 29.1 | 6.3 × 10−10 | 1.0 × 10−9–1.0 × 10−3 | 3.0–9.0 | 25.1 µVs−1 (i ± 1 nA) | [159] |
Pb2+ | lead ionophore IV | CNFs:HMImPF6 | 31.5 | 6.0 × 10−9 | 1.0 × 10−8–1.0 × 10−2 | 3.1–7.6 | 105 µVh−1 (i = 0) | [178] |
NO3− | TDMANO3 | PtNPs-CB | −58.6 | 5.0 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | 3.0–9.0 | 6.3 µVh−1 (i = 0) | [163] |
NO3− | nitrate ionophore V | graphene-TTF/TTF+ | −59.1 | 6.3 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | - | 4.26 µVs−1 (i = ± 5 nA) | [166] |
NO3− | nitrate ionophore V | TTF-TCNQ | −58.5 | 3.2 × 10−6 | 1.0 × 10−5–1.0 × 10−1 | - | 16.7 µVs−1 (i = ± 10 nA) | [182] |
NO3− | TDMACl | MOFs | −56.3 | 6.3 × 10−7 | 1.0 × 10−6–3.0 × 10−2 | - | 11.1 µVh−1 (i = 0) | [183] |
NO3− | TDMANO3 | POT:MoS2 nanocomposite | −64.0 | 9.2 × 10−5 | 7.1 × 10−4–1.0 × 10−1 | - | - | [155] |
NO3− | nitrate ionophore V | PAAm(Cl−)-MnO2 | −50.6 | 6.3 × 10−6 | 6.3 × 10−6–1.0 × 10−1 | - | 2.0 µVs−1 (i ± 1 nA) | [160] |
NO3− | Co(Bphen)2(NO3)2 | MWCNTs:THTDPCl nanocomposite | −57.1 | 5.0 × 10−7 | 1.0 × 10−6–1.0 × 10−1 | 4.2–10.8 | 106 μVs−1 (i = ± 100 nA) 151.2 µVh−1 (i = 0) | [169] |
NO3− | TDDANO3 | PEDOT:PEG | −55.8 | 1.1 × 10−6 | 1.1 × 10−6–1.0 × 10−1 | 4.0–10.0 | 280 μVh−1 (i = 0), 90.9 μVs−1 (i = ± 10 nA) | [162] |
Cl− | TDMACl | CB-TTF-TCNQ | −58.7 | 2.5 × 10−6 | 1.0 × 10−5–1.0 × 10−1 | - | 16.0 µVs−1 (i = ± 300 nA) | [152] |
Cl− | bisthiourea-1 | PAAm(Cl−)-MnO2 | −52.2 | 1.0 × 10−5 | 1.0 × 10−5–1.0 × 10−1 | – | 3300 μVs−1 (i ± 1 nA) | [160] |
Cl− | chloride ionophore III | PANINFs-Cl:MWCNT nanocomposite | −61.3 | 2.3 × 10−6 | 5.0 × 10−6–1.0 × 10−1 | 4.0–9.0 | 30 μVh−1 (i = 0) | [144] |
SO42− | sulphate ionophore I | oAuCuNPs-MWCNTs | −27.0 | 9.5 × 10−6 | 1.0 × 10−5–1.0 × 10−1 | - | 7080 µVh−1 (i = 0) | [119] |
H2PO4− | uranyl salophene ionophore I | MWCNTs-F127 nanocomposite | −59.0 | 1.6 × 10−5 | 3.2 × 10−5–1.0 × 10−1 | - | - | [165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardak, C.; Pietrzak, K.; Morawska, K.; Grabarczyk, M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. Sensors 2023, 23, 5839. https://doi.org/10.3390/s23135839
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. Sensors. 2023; 23(13):5839. https://doi.org/10.3390/s23135839
Chicago/Turabian StyleWardak, Cecylia, Karolina Pietrzak, Klaudia Morawska, and Malgorzata Grabarczyk. 2023. "Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review" Sensors 23, no. 13: 5839. https://doi.org/10.3390/s23135839
APA StyleWardak, C., Pietrzak, K., Morawska, K., & Grabarczyk, M. (2023). Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. Sensors, 23(13), 5839. https://doi.org/10.3390/s23135839