Relay Selection for Dual-Hop Cooperative Ambient Backscatter Communication Systems
Abstract
:1. Introduction
- Different from the conventional single-relay selection schemes in [31,32], where only a type of link is involved, there are two different types of links in our considered system, i.e., the cellular link and backscatter link. Thus, the conventional single-relay selection schemes cannot be adopted in the considered system straightforwardly. In this paper, considering the two different types of links, we proposed two novel single-relay selection schemes (RSSs), namely reactive RSS and proactive RSS, which are appropriate for dual-hop cooperative AmBC systems and can be performed in a distributed manner. Moreover, theoretical results show that the proposed reactive relay selection scheme is outage-optimal among all possible single-relay selection schemes.
- The closed-form expressions of the outage probability (OP) for the proposed relay selection schemes are derived and the asymptotic OPs are obtained at high signal-to-noise ratio (SNR). The outage performance comparison between the reactive RSS and proactive RSS is also provided to gain more insight.
- Both theoretical and simulation results demonstrate that an outage floor phenomenon occurs at high SNR due to the interference caused by the backscatter link and the outage floor can be reduced by increasing the number of relays or decreasing the reflection coefficient of the backscatter device.
2. System Model
3. Relay Selection Schemes
3.1. Reactive RSS
3.2. Proactive RSS
3.3. Relay Selection Implementation
3.3.1. The Reactive Relay Selection Scheme
3.3.2. The Proactive Relay Selection Scheme
4. Performance Analysis
4.1. Reactive RSS
4.1.1. OP Analysis for Backscatter Link
4.1.2. OP Analysis for Cellular Link
4.2. Proactive RSS
4.2.1. OP Analysis for Backscatter Link
4.2.2. OP Analysis for Cellular Link
4.3. Performance Comparison
5. Asymptotic Performance Analysis
6. Simulation Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notations
Complex Gaussian random variable with mean u and variance | |
Probability density function (PDF) of X | |
Cumulative distribution function (CDF) of X | |
Binomial coefficient | |
Probability operator | |
Expectation operator | |
Upper incomplete gamma function (Equation (8.350.2) [42]) | |
The absolute value of a complex number | |
Take the partial derivative of with respect to x |
Appendix A. The Derivation of (14)
Appendix B. The Derivation of (27)
References
- Janjua, M.B.; Arslan, H. A Survey of Symbiotic Radio: Methodologies, Applications, and Future Directions. Sensors 2023, 23, 2511. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.V.; Hoang, D.T.; Xiao, L.; Niyato, D.; Wang, P.; Dong, I.K. Ambient backscatter communications: A contemporary survey. IEEE Commun. Surv. Tutor. 2018, 20, 2889–2922. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Liang, Y.C.; Long, R.; Zhang, Q. Cooperative ambient backscatter system: A symbiotic radio paradigm for passive IoT. IEEE Wirel. Commun. Lett. 2019, 8, 1191–1194. [Google Scholar] [CrossRef]
- Iyer, V.; Talla, V.; Kellogg, B.; Gollakota, S.; Smith, J.R. Inter-technology backscatter: Towards internet connectivity for implanted devices. In Proceedings of the ACM SIGCOMM, Florianopolis, Brazil, 22–26 August 2016; Volume 46, pp. 356–369. [Google Scholar]
- Zhang, P.; Rostami, M.; Hu, P.; Ganesan, D. Enabling Practical Backscatter Communication for On-body Sensors. In Proceedings of the ACM SIGCOMM, Florianopolis, Brazil, 22–26 August 2016; Volume 46, pp. 370–383. [Google Scholar]
- Vougioukas, G.; Bletsas, A. Switching Frequency Techniques for Universal Ambient Backscatter Networking. IEEE J. Sel. Areas Commun. 2019, 37, 464–477. [Google Scholar] [CrossRef]
- Li, D.; Liang, Y.C. Price-Based Bandwidth Allocation for Backscatter Communication With Bandwidth Constraints. IEEE Trans. Wirel. Commun. 2019, 18, 5170–5180. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Q.; Liang, Y.C. Cooperative ambient backscatter communications for green Internet-of-Things. IEEE Internet Things J. 2018, 5, 1116–1130. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Xu, W.; Wang, K.; Pan, C.; Alouini, M.S.; Nallanathan, A. Ergodic rate analysis of cooperative ambient backscatter communication. IEEE Wirel. Commun. Lett. 2019, 8, 1679–1682. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liang, Y.C. Adaptive ambient backscatter communication systems with MRC. IEEE Trans. Veh. Technol. 2018, 67, 12352–12357. [Google Scholar] [CrossRef]
- Long, R.; Liang, Y.C.; Guo, H.; Yang, G.; Zhang, R. Symbiotic radio: A new communication paradigm for passive Internet of Things. IEEE Internet Things J. 2020, 7, 1350–1363. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Dai, Z.; Zeng, Y. MIMO Symbiotic Radio with Massive Backscatter Devices: Asymptotic Analysis and Precoding Optimization. IEEE Trans. Commun. 2023. [Google Scholar] [CrossRef]
- Long, R.; Guo, H.; Zhang, L.; Liang, Y.C. Full-duplex backscatter communications in symbiotic radio systems. IEEE Access 2019, 7, 21597–21608. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Liang, Y.C.; Kam, P.Y. Backscatter-NOMA: A symbiotic system of cellular and Internet-of-Things networks. IEEE Access 2019, 7, 20000–20013. [Google Scholar] [CrossRef]
- Elsayed, M.; Samir, A.; El-Banna, A.A.A.; Li, X.; ElHalawany, B.M. When NOMA Multiplexing Meets Symbiotic Ambient Backscatter Communication: Outage Analysis. IEEE Trans. Veh. Technol. 2022, 71, 1026–1031. [Google Scholar] [CrossRef]
- Asif, M.; Ihsan, A.; Khan, W.U.; Ranjha, A.; Zhang, S.; Wu, S.X. Energy-efficient beamforming and resource optimization for AmBSC-assisted cooperative NOMA IoT networks. IEEE Internet Things J. 2023, in press. [CrossRef]
- Yang, H.; Ding, H.; Elkashlan, M.; Li, H.; Xin, K. A Novel Symbiotic Backscatter-NOMA System. IEEE Trans. Veh. Technol. 2023, in press. [CrossRef]
- Ma, H.; Zhang, H.; Zhang, N.; Wang, J.; Wang, N.; Leung, V.C.M. Reconfigurable intelligent surface with energy harvesting assisted cooperative ambient backscatter communications. IEEE Wirel. Commun. Lett. 2022, 11, 1283–1287. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, Y.; Li, D.; Huang, C.; Yuen, C.; Zhou, J.; Yang, G. Energy-Efficient Maximization for RIS-Aided MISO Symbiotic Radio Systems. IEEE Trans. Veh. Technol. 2023, in press. [CrossRef]
- Jia, S.; Wang, R.; Xu, Y.; Lou, Y.; Zhang, D.; Sato, T. Secrecy Analysis of ABCom-Based Intelligent Transportation Systems With Jamming. IEEE Trans. Intell. Transp. Syst. 2023, in press. [CrossRef]
- Laneman, J.N.; Tse, D.; Wornell, G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inform. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Laneman, J.N.; Wornell, G.W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. Inform. Theory 2003, 49, 2415–2425. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.T.; Choi, K.W.; Lee, T.J.; Chung, M.Y. Outage probability and throughput analysis of swipt enabled cognitive relay network with ambient backscatter. IEEE Internet Things J. 2018, 5, 3198–3208. [Google Scholar] [CrossRef]
- Do, D.-T.; Nguyen, T.-L.; Lee, B.M. Performance Analysis of Cognitive Relay-Assisted Ambient Backscatter with MRC over Nakagami-m Fading Channels. Sensors 2020, 20, 3447. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.N.; Kim, J.-Y.; Shin, Y. Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model. Sensors 2020, 20, 4534. [Google Scholar] [CrossRef]
- Lyu, B.; Yang, Z.; Guo, H.; Tian, F.; Gui, G. Relay cooperation enhanced backscatter communication for internet-of-things. IEEE Internet Things J. 2019, 6, 2860–2871. [Google Scholar] [CrossRef]
- Li, D. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering. IEEE Trans. Commun. 2020, 68, 1405–1416. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, X.; Ji, H.; Zhang, H. Exploiting Hybrid SWIPT in Ambient Backscatter Communication-Enabled Relay Networks: Optimize Power Allocation and Time Scheduling. IEEE Internet Things J. 2022, 9, 24655–24668. [Google Scholar] [CrossRef]
- Li, X.; Jiang, J.; Wang, H.; Han, C.; Chen, G.; Du, J.; Hu, C.; Mumtaz, S. Physical layer security for wireless-powered ambient backscatter cooperative communication networks. IEEE Trans. Cogn. Commun. Netw. 2023, in press. [CrossRef]
- Liu, Y.; Ye, Y.; Yan, G.; Zhao, Y. Outage performance analysis for an opportunistic source selection based two-way cooperative ambient backscatter communication system. IEEE Commun. Lett. 2021, 25, 437–441. [Google Scholar] [CrossRef]
- Bletsas, A.; Khisti, A.; Reed, D.P.; Lippman, A. A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 2006, 24, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Bletsas, A.; Shin, H.; Win, M.Z. Cooperative communications with outage-optimal opportunistic relaying. IEEE Trans. Wirel. Commun. 2007, 6, 3450–3460. [Google Scholar] [CrossRef] [Green Version]
- Li, D. Backscatter communication powered by selective relaying. IEEE Trans. Veh. Technol. 2020, 69, 14037–14042. [Google Scholar] [CrossRef]
- Wang, W.J.; Xu, K.; Yan, Y.; Chen, L. Relay Selection-Based Cooperative Backscatter Transmission With Energy Harvesting: Throughput Maximization. IEEE Wirel. Commun. 2022, 11, 1533–1537. [Google Scholar] [CrossRef]
- Li, M.; Yu, M.; Zhang, Y.; Wang, H. A lightweight selection cooperation protocol with multiple available best relays. IEEE Commun. Lett. 2013, 17, 1172–1175. [Google Scholar]
- Woradit, K.; Quek, T.Q.S.; Suwansantisuk, W.; Wymeersch, H.; Wuttisittikulkij, L.; Win, M.Z. Outage behavior of selective relaying schemes. IEEE Trans. Wirel. Commun. 2009, 8, 3890–3895. [Google Scholar] [CrossRef]
- Al-Karaki, J.N.; Kamal, A.E. Routing techniques in wireless sensor networks: A survey. IEEE Wirel. Commun. 2004, 1, 6–28. [Google Scholar] [CrossRef] [Green Version]
- Ghaderi, J.; Xie, L.L.; Shen, X.S. Hierarchical cooperation in ad hoc networks: Optimal clustering and achievable throughput. IEEE Trans. Inform. Theory 2009, 55, 3425–3436. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Wang, G.; Fan, R.; Tellambura, C. Blind channel estimation for ambient backscatter communication systems. IEEE Commun. Lett. 2018, 22, 1296–1299. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, G.; Atapattu, S.; He, R.; Liang, Y.C. Channel estimation for ambient backscatter communication systems with massive-antenna reader. IEEE Trans. Veh. Technol. 2019, 68, 8254–8258. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Zhang, Q.; Qin, J. Exact outage probability of Nth-best multicast relay networks with co-channel interference. IEEE Wirel. Commun. Lett. 2013, 2, 595–598. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press Inc.: San Diego, CA, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Kuang, W.; Wang, S. Relay Selection for Dual-Hop Cooperative Ambient Backscatter Communication Systems. Sensors 2023, 23, 5791. https://doi.org/10.3390/s23135791
Yang P, Kuang W, Wang S. Relay Selection for Dual-Hop Cooperative Ambient Backscatter Communication Systems. Sensors. 2023; 23(13):5791. https://doi.org/10.3390/s23135791
Chicago/Turabian StyleYang, Ping, Weichao Kuang, and Shanjin Wang. 2023. "Relay Selection for Dual-Hop Cooperative Ambient Backscatter Communication Systems" Sensors 23, no. 13: 5791. https://doi.org/10.3390/s23135791
APA StyleYang, P., Kuang, W., & Wang, S. (2023). Relay Selection for Dual-Hop Cooperative Ambient Backscatter Communication Systems. Sensors, 23(13), 5791. https://doi.org/10.3390/s23135791