Trip-Related Fall Risk Prediction Based on Gait Pattern in Healthy Older Adults: A Machine-Learning Approach
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Setup
2.3. Balance Outcomes
2.4. Kinematic Measures
2.5. Machine Learning
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tuunainen, E.; Rasku, J.; Jantti, P.; Pyykko, I. Risk factors of falls in community dwelling active elderly. Auris Nasus Larynx 2014, 41, 10–16. [Google Scholar] [CrossRef]
- Norton, R.; Campbell, A.J.; LeeJoe, T.; Robinson, E.; Butler, M. Circumstances of falls resulting in hip fractures among older people. J. Am. Geriatr. Soc. 1997, 45, 1108–1112. [Google Scholar] [CrossRef]
- Stevens, J.A.; Sogolow, E.D. Gender differences for non-fatal unintentional fall related injuries among older adults. Inj. Prev. 2005, 11, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Blake, A.; Morgan, K.; Bendall, M.; Dallosso, H.; Ebrahim, S.; Arie, T.A.; Fentem, P.; Bassey, E. Falls by elderly people at home: Prevalence and associated factors. Age Ageing 1988, 17, 365–372. [Google Scholar] [CrossRef]
- Tang, P.F.; Woollacott, M.H.; Chong, R.K.Y. Control of reactive balance adjustments in perturbed human walking: Roles of proximal and distal postural muscle activity. Exp. Brain Res. 1998, 119, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijzen, P.H.; Duysens, J. Proactive and reactive mechanisms play a role in stepping on inverting surfaces during gait. J. Neurophysiol. 2007, 98, 2266–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, H.; Ebihara, S.; Tomita, N.; Sasaki, H.; Butler, J.P. Differential gait kinematics between fallers and non-fallers in community-dwelling elderly people. Geriatr. Gerontol. Int. 2005, 5, 127–134. [Google Scholar] [CrossRef]
- Hamacher, D.; Singh, N.; Van Dieën, J.H.; Heller, M.; Taylor, W.R. Kinematic measures for assessing gait stability in elderly individuals: A systematic review. J. R. Soc. Interface 2011, 8, 1682–1698. [Google Scholar] [CrossRef]
- van den Bogert, A.J.; Pavol, M.; Grabiner, M.D. Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. J. Biomech. 2002, 35, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavol, M.J.; Owings, T.M.; Foley, K.T.; Grabiner, M.D. Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M428–M437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carty, C.P.; Cronin, N.J.; Nicholson, D.; Lichtwark, G.A.; Mills, P.M.; Kerr, G.; Cresswell, A.G.; Barrett, R.S. Reactive stepping behaviour in response to forward loss of balance predicts future falls in community-dwelling older adults. Age Ageing 2015, 44, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, N.; Nemet, D.; Pantanowitz, M.; Eliakim, A. Gait pattern, impact to the skeleton and postural balance in overweight and obese children: A review. Sports 2018, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Martinikorena, I.; Martínez-Ramírez, A.; Gómez, M.; Lecumberri, P.; Casas-Herrero, A.; Cadore, E.L.; Millor, N.; Zambom-Ferraresi, F.; Idoate, F.; Izquierdo, M. Gait variability related to muscle quality and muscle power output in frail nonagenarian older adults. J. Am. Med. Dir. Assoc. 2016, 17, 162–167. [Google Scholar]
- Kulkarni, S.; Nagarkar, A. Basic gait pattern and impact of fall risk factors on gait among older adults in India. Gait Posture 2021, 88, 16–21. [Google Scholar] [CrossRef]
- Bhatt, T.; Wening, J.; Pai, Y.-C. Influence of gait speed on stability: Recovery from anterior slips and compensatory stepping. Gait Posture 2005, 21, 146–156. [Google Scholar] [PubMed]
- Wang, S.; Varas-Diaz, G.; Dusane, S.; Wang, Y.; Bhatt, T. Slip-induced fall-risk assessment based on regular gait pattern in older adults. J. Biomech. 2019, 96, 109334. [Google Scholar] [CrossRef] [PubMed]
- Gangwani, R.; Dusane, S.; Wang, S.; Kannan, L.; Wang, E.; Fung, J.; Bhatt, T. Slip-Fall Predictors in Community-Dwelling, Ambulatory Stroke Survivors: A Cross-sectional Study. J. Neurol. Phys. Ther. 2020, 44, 248–255. [Google Scholar] [CrossRef]
- Lai, D.T.; Taylor, S.B.; Begg, R.K. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling. Hum. Mov. Sci. 2012, 31, 271–283. [Google Scholar] [CrossRef]
- Best, R.; Begg, R. A method for calculating the probability of tripping while walking. J. Biomech. 2008, 41, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Sessoms, P.H.; Wyatt, M.; Grabiner, M.; Collins, J.-D.; Kingsbury, T.; Thesing, N.; Kaufman, K. Method for evoking a trip-like response using a treadmill-based perturbation during locomotion. J. Biomech. 2014, 47, 277–280. [Google Scholar]
- Pavol, M.J.; Owings, T.M.; Foley, K.T.; Grabiner, M.D. Gait characteristics as risk factors for falling from trips induced in older adults. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 1999, 54, M583–M590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bhatt, T. Kinematic Measures for Recovery Strategy Identification following an Obstacle-Induced Trip in Gait. J. Mot. Behav. 2022, 55, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Pai, Y.C. Automatic recognition of falls in gait-slip training: Harness load cell based criteria. J. Biomech. 2011, 44, 2243–2249. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, N.J.; Bauer, A.; Grabiner, M.D. Relating minimum toe clearance to prospective, self-reported, trip-related stumbles in the community. Prosthet. Orthot. Int. 2017, 41, 387–392. [Google Scholar] [CrossRef]
- Grabiner, M.D.; Donovan, S.; Bareither, M.L.; Marone, J.R.; Hamstra-Wright, K.; Gatts, S.; Troy, K.L. Trunk kinematics and fall risk of older adults: Translating biomechanical results to the clinic. J. Electromyogr. Kinesiol. 2008, 18, 197–204. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Bolton, R.; Kaur, T.; Bhatt, T. Effects of task-specific obstacle-induced trip-perturbation training: Proactive and reactive adaptation to reduce fall-risk in community-dwelling older adults. Aging Clin. Exp. Res. 2020, 32, 893–905. [Google Scholar] [CrossRef]
- Hof, A.; Gazendam, M.; Sinke, W. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef]
- Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef]
- Kausar, F.; Awadalla, M.; Mesbah, M.; AlBadi, T. Automated Machine Learning based Elderly Fall Detection Classification. Procedia Comput. Sci. 2022, 203, 16–23. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Suganthan, P.N. Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput. Intell. Mag. 2016, 11, 41–53. [Google Scholar] [CrossRef]
- Helgadóttir, B.; Laflamme, L.; Monárrez-Espino, J.; Möller, J. Medication and fall injury in the elderly population; do individual demographics, health status and lifestyle matter? BMC Geriatr. 2014, 14, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouriani, A.; McGovern, R.A.; Rajamani, R. Step Length Estimation Using Inertial Measurements Units. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; IEEE: Piscateville, NJ, USA, 2021; pp. 666–671. [Google Scholar]
- Kuo, A.D. A simple model of bipedal walking predicts the preferred speed–step length relationship. J. Biomech. Eng. 2001, 123, 264–269. [Google Scholar]
- Khandoker, A.H.; Lynch, K.; Karmakar, C.K.; Begg, R.K.; Palaniswami, M. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces. J. Neuroeng. Rehabil. 2010, 7, 18. [Google Scholar] [CrossRef]
- Thies, S.; Price, C.; Kenney, L.; Baker, R. Effects of shoe sole geometry on toe clearance and walking stability in older adults. Gait Posture 2015, 42, 105–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begg, R.; Sparrow, W. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle. J. Med. Eng. Technol. 2006, 30, 382–389. [Google Scholar]
- Pijnappels, M.; Bobbert, M.F.; van Dieën, J.H. Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture 2005, 21, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Haque, F.; Reaz, M.B.; Chowdhury, M.E.; Kiranyaz, S.; Ali, S.H.; Alhatou, M.; Habib, R.; Bakar, A.A.; Arsad, N.; Srivastava, G. Performance Analysis of Conventional Machine Learning Algorithms for Diabetic Sensorimotor Polyneuropathy Severity Classification Using Nerve Conduction Studies. Comput. Intell. Neurosci. 2022, 2022, 9690940. [Google Scholar] [PubMed]
- Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar]
Feature (Unit) | No-Fall | E-Fall | L-Fall |
---|---|---|---|
COM velocity at LO (m/s) | 1.03 ± 0.19 | 1.17 ± 0.22 | 1.19 ± 0.54 |
L hip angle at Post-TD (deg) | 108.08 ± 4.92 | 110.22 ± 3.58 | 109.91 ± 5.18 |
Gait speed in gait cycle (m/s) | 1.03 ± 0.19 | 1.17 ± 0.21 | 1.12 ± 0.19 |
Max knee flexion in swing phase (deg) | 119.18 ± 9.15 | 116.76 ± 6.62 | 116.50 ± 10.21 |
R foot angle at post-TD (deg) | −9.09 ± 7.11 | −12.23 ± 8.55 | −12.32 ± 8.33 |
L knee angle at post-TD (deg) | 178.15 ± 8.80 | 176.36 ± 8.23 | 177.07 ± 8.97 |
Toe clearance (m) | 0.16 ± 0.03 | 0.16 ± 0.02 | 0.16 ± 0.02 |
Max trunk flexion in gait cycle (deg) | 86.08 ± 5.34 | 84.88 ± 6.48 | 86.67 ± 5.70 |
COM velocity at pre-TD (m/s) | 1.06 ± 0.21 | 1.20 ± 0.24 | 1.16 ± 0.20 |
R hip angle at post-TD (deg) | 74.05 ± 6.46 | 71.71 ± 6.32 | 72.54 ± 4.46 |
Trunk angle at post-TD (deg) | 89.23 ± 4.73 | 88.11 ± 5.91 | 89.87 ± 5.89 |
Max hip flexion in swing phase (deg) | 112.44 ± 5.11 | 112.86 ± 3.98 | 114.19 ± 5.65 |
R knee angle at post-TD (deg) | 171.79 ± 8.47 | 173.67 ± 9.50 | 172.08 ± 7.45 |
L hip angle at LO (deg) | 87.71 ± 6.05 | 87.15 ± 7.00 | 86.05 ± 6.17 |
Max gait speed in gait cycle (m/s) | 1.11 ± 0.20 | 1.25 ± 0.23 | 1.28 ± 0.63 |
R knee angle at LO (deg) | 164.41 ± 9.24 | 162.50 ± 9.37 | 164.37 ± 9.36 |
L foot angle at post-TD (deg) | 15.68 ± 7.12 | 17.54 ± 5.84 | 16.81 ± 6.27 |
R hip angle at LO (deg) | 102.18 ± 5.75 | 104.43 ± 6.01 | 103.60 ± 5.68 |
Trunk angle at LO (deg) | 88.57 ± 4.80 | 87.15 ± 6.25 | 89.12 ± 5.62 |
L knee angle at LO (deg) | 134.20 ± 10.42 | 131.71 ± 10.11 | 133.72 ± 10.32 |
Feature Number | New Feature | Overall Accuracy | |||
---|---|---|---|---|---|
Overall | No-Fall | E-Fall | L-Fall | ||
1 | COM velocity at LO | 67.7 | 97.1 | 0.0 | 18.5 |
2 | L hip angle at post-TD | 71.1 | 94.1 | 0.0 | 37.3 |
3 | Gait speed in gait cycle | 71.2 | 94.9 | 0.0 | 35.9 |
4 | Max knee flexion in swing phase | 72.2 | 96.5 | 0.0 | 35.6 |
5 | R foot angle at post-TD | 70.4 | 96.5 | 0.0 | 29.2 |
6 | L knee angle at post-TD | 72.6 | 96.6 | 0.5 | 36.8 |
7 | Toe clearance | 79.3 | 98.6 | 2.5 | 55.4 |
8 | Max trunk flexion in gait cycle | 81.9 | 99.3 | 6.9 | 62.0 |
9 | COM velocity at pre-TD | 82.3 | 99.2 | 7.6 | 63.3 |
10 | R hip angle at post-TD | 85.0 | 99.5 | 11.5 | 71.1 |
11 | Trunk angle at post-TD | 86.0 | 99.6 | 15.6 | 73.6 |
12 | Max hip flexion in swing phase | 81.2 | 99.3 | 3.3 | 60.5 |
13 | R knee angle at post-TD | 84.5 | 99.4 | 8.3 | 70.8 |
14 | L hip angle at LO | 87.8 | 99.6 | 14.7 | 80.1 |
15 | Max gait speed in gait cycle | 85.9 | 99.5 | 13.1 | 73.9 |
16 | R knee angle at LO | 87.4 | 99.5 | 11.4 | 80.0 |
17 | L foot angle at post-TD | 88.9 | 99.8 | 17.8 | 83.0 |
18 | R hip angle at LO | 88.7 | 99.9 | 20.0 | 81.5 |
19 | Trunk angle at LO | 88.7 | 99.9 | 17.2 | 82.3 |
20 | L knee angle at LO | 88.3 | 99.5 | 17.1 | 81.9 |
Feature Number | New Feature | Overall Accuracy | |||
---|---|---|---|---|---|
Overall | No-Fall | E-Fall | L-Fall | ||
1 | COM velocity at LO | 70.2 | 87.5 | 0.0 | 49.3 |
2 | L hip angle at post-TD | 71.0 | 82.1 | 0.0 | 64.6 |
3 | Gait speed in gait cycle | 71.2 | 82.1 | 0.0 | 64.9 |
4 | Max knee flexion in swing phase | 73.1 | 87.0 | 0.0 | 60.5 |
5 | R foot angle at post-TD | 71.5 | 84.4 | 0.0 | 60.7 |
6 | L knee angle at post-TD | 74.1 | 86.1 | 3.2 | 65.2 |
7 | Toe clearance | 81.7 | 90.5 | 16.3 | 78.6 |
8 | Max trunk flexion in gait cycle | 86.4 | 90.9 | 38.9 | 88.4 |
9 | COM velocity at pre-TD | 88.0 | 92.5 | 40.4 | 90.2 |
10 | R hip angle at post-TD | 90.8 | 94.1 | 50.5 | 93.9 |
11 | Trunk angle at post-TD | 91.1 | 93.3 | 56.6 | 95.3 |
12 | Max hip flexion in swing phase | 84.2 | 91.8 | 23.9 | 82.5 |
13 | R knee angle at post-TD | 89.0 | 93.7 | 42.9 | 90.2 |
14 | L hip angle at LO | 93.1 | 94.6 | 60.1 | 98.2 |
15 | Max gait speed in gait cycle | 90.8 | 93.9 | 52.2 | 94.1 |
16 | R knee angle at LO | 93.8 | 95.5 | 62.7 | 97.9 |
17 | L foot angle at post-TD | 94.2 | 95.3 | 68.2 | 98.7 |
18 | R hip angle at LO | 94.1 | 95.0 | 68.2 | 99.0 |
19 | Trunk angle at LO | 94.3 | 95.3 | 69.7 | 98.6 |
20 | L knee angle at LO | 94.0 | 94.9 | 68.4 | 98.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Nguyen, T.K.; Bhatt, T. Trip-Related Fall Risk Prediction Based on Gait Pattern in Healthy Older Adults: A Machine-Learning Approach. Sensors 2023, 23, 5536. https://doi.org/10.3390/s23125536
Wang S, Nguyen TK, Bhatt T. Trip-Related Fall Risk Prediction Based on Gait Pattern in Healthy Older Adults: A Machine-Learning Approach. Sensors. 2023; 23(12):5536. https://doi.org/10.3390/s23125536
Chicago/Turabian StyleWang, Shuaijie, Tuan Khang Nguyen, and Tanvi Bhatt. 2023. "Trip-Related Fall Risk Prediction Based on Gait Pattern in Healthy Older Adults: A Machine-Learning Approach" Sensors 23, no. 12: 5536. https://doi.org/10.3390/s23125536