High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering
Abstract
:1. Introduction
2. Background
Method | Lowest Detected Conc. (ppm) | Estimated LOD (ppm) | Measurement Time (s) | Reference |
---|---|---|---|---|
Chemiresistors | 50 | 0.01 | ∼20 | [17] |
Schottky diode | 10,000 | 0.1 | ∼10 | [44] |
MEMS | 6 | 0.1 | ∼2 | [45] |
IR absorption | 5000 at 0.1 MPa | 1000 | 1 | [23] |
Raman: | ||||
• PARS | 10 at 0.3 MPa | 3.4 | ∼10 | [28] |
• FERS | 5 | 4.7 | 1–100 | [31] |
• CERS | 100 at 0.1 MPa 0.5 at 0.1 MPa | 0.069 - | 500 2500 | [36] |
• Multipass cavity | 0.075 at 0.2 MPa | 0.06 | 600 | This work |
3. Instrumentation and Data Collection
4. Methodology for Quantification of Detected H Concentration
4.1. Numerical Curve Integral
4.2. Least-Squares Fitting (LSQF) Data Comparison
4.3. Gaussian Fitting Method
4.4. Normalization to Oxygen Concentration
4.5. Method Comparison
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chauhan, P.; Bhattacharya, S. Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review. Int. J. Hydrogen Energy 2019, 44, 26076–26099. [Google Scholar] [CrossRef]
- Jordan, A.; Steinberg, B. Calibration of atmospheric hydrogen measurements. Atmos. Meas. Tech. 2011, 4, 509–521. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.; Balcombe, P.; Dodds, P.; Ekins, P.; Shah, N.; Ward, K. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Zhao, T.; Zou, Z.; Shen, B.; Yu, Y.; Zhang, S.; Zhang, H. A new hydrogen sensor fault diagnosis method based on transfer learning with LeNet-5. Front. Neurorobot. 2021, 15, 664135. [Google Scholar] [CrossRef]
- Song, K.; Xu, P.; Chen, Y.; Zhang, T.; Wei, G.; Wang, Q. A fault diagnosis and reconfiguration strategy for self-validating hydrogen sensor array based on mwpca and elm. IEEE Access 2019, 7, 115075–115092. [Google Scholar] [CrossRef]
- Buttner, W.; Post, M.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Atkin, P.; Mackinnon, I.; Shafiei, M. Low-operating temperature resistive nanostructured hydrogen sensors. Int. J. Hydrogen Energy 2019, 44, 26646–26664. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Yu, A.; Juodkazis, S.; Shafiei, M. Ultra-sensitive photo-induced hydrogen gas sensor based on two-dimensional CeO2-Pd-PDA/rGO heterojunction nanocomposite. Nanomaterials 2022, 12, 1628. [Google Scholar] [CrossRef]
- Bertagni, M.; Pacala, S.; Paulot, F.; Porporato, A. Risk of the hydrogen economy for atmospheric methane. Nat. Commun. 2022, 13, 7706. [Google Scholar] [CrossRef]
- Musshoff, F.; Hagemeier, L.; Kirschbaum, K.; Madea, B. Two cases of suicide by asphyxiation due to helium and argon. Forensic. Sci. Int. 2012, 223, e27–e30. [Google Scholar] [CrossRef]
- Varlet, V.; Smith, F.; Augsburger, M. Indirect hydrogen analysis by gas chromatography coupled to mass spectrometry (GC–MS). J. Mass Spectrom. 2013, 48, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Weijun, Y. Analytical accuracy of hydrogen measurement using gas chromatography with thermal conductivity detection. J. Sep. Sci. 2015, 38, 2640–2646. [Google Scholar] [CrossRef]
- Mack, A.; Liu, Y.; Luo, W.; Liu, L.; Parcher, J. Detection and analysis for hydrogen isotopes and spin isomers by low-pressure chemical ionization mass spectrometry. Anal. Chem. 1994, 66, 115–118. [Google Scholar] [CrossRef]
- Ottens, A.; Arkin, C.; Griffin, T.; Palmer, P.; Harrison, W. Ion-molecule reactions in quadrupole ion trap mass spectrometry: Implications for lightweight gas analysis. Int. J. Mass Spectrom. 2005, 243, 31–39. [Google Scholar] [CrossRef]
- Behera, A.; Viswanath, R.; Manovah David, T.; Prasad, A.; Ajikumar, P.; Mathews, T. Hydrogen sensing behaviour of platinum and palladium functionalized silicon nanowalls. Appl. Phys. A 2021, 127, 1–12. [Google Scholar] [CrossRef]
- Ren, Q.; Cao, Y.; Arulraj, D.; Liu, C.; Wu, D.; Li, W.; Li, A. Resistive-type hydrogen sensors based on zinc oxide nanostructures. J. Electrochem. Soc. 2020, 167, 067528. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Y.; Xue, Y.; Zhang, M.; Li, P.; Lian, K.; Zhuiykov, S.; Zhang, W.; Chen, Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens. Actuators B Chem. 2018, 257, 124–135. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, X.L.; Feng, C.; Xiao, H.L.; Yang, C.B.; Wang, J.X.; Wang, B.Z.; Ran, J.X.; Wang, C.M. Hydrogen Sensors Based on AlGaN/AlN/GaN Schottky Diodes. Chin. Phys. Lett. 2008, 25, 266. [Google Scholar]
- Ajayan, J.; Nirmal, D.; Ramesh, R.; Bhattacharya, S.; Tayal, S.; Joseph, L.; Thoutam, L.; Ajitha, D. A critical review of AlGaN/GaN-heterostructure based Schottky diode/HEMT hydrogen (H2) sensors for aerospace and industrial applications. Measurement 2021, 186, 110100. [Google Scholar] [CrossRef]
- Sharma, B.; Kim, J. MEMS based highly sensitive dual FET gas sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 detection. Sci. Rep. 2018, 8, 5902. [Google Scholar] [CrossRef]
- D’amico, A.; Palma, A.; Verona, E. Surface acoustic wave hydrogen sensor. Sens. Actuators 1982, 3, 31–39. [Google Scholar] [CrossRef]
- Sil, D.; Hines, J.; Udeoyo, U.; Borguet, E. Palladium nanoparticle-based surface acoustic wave hydrogen sensor. ACS Appl. Mater. Interfaces 2015, 7, 5709–5714. [Google Scholar] [CrossRef]
- Avetisov, V.; Bjoroey, O.; Wang, J.; Geiser, P.; Paulsen, K. Hydrogen sensor based on tunable diode laser absorption spectroscopy. Sensors 2019, 19, 5313. [Google Scholar] [CrossRef]
- Petrov, D.; Matrosov, I.; Zaripov, A.; Maznoy, A. Application of Raman spectroscopy for determination of syngas composition. Appl. Spectrosc. 2020, 74, 948–953. [Google Scholar] [CrossRef]
- Knebl, A.; Domes, C.; Domes, R.; Wolf, S.; Popp, J.; Frosch, T. Hydrogen and C2–C6 alkane sensing in complex fuel gas mixtures with fiber-enhanced Raman spectroscopy. Anal. Chem. 2021, 93, 10546–10552. [Google Scholar] [CrossRef] [PubMed]
- Hippler, M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback cw-diode lasers. Anal. Chem. 2015, 87, 7803–7809. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Muller, A. Ambient Hydrocarbon Detection with an Ultra-Low-Loss Cavity Raman Analyzer. Anal. Chem. 2023, 95, 3703–3711. [Google Scholar] [CrossRef]
- Oki, Y.; Kawada, N.; Ogawa, T.; Abe, Y.; Maeda, M. Sensitive H 2 Detection Using a New Technique of Photoacoustic Raman Spectroscopy. Jpn. J. Appl. Phys. 1997, 36, L1172. [Google Scholar] [CrossRef]
- Petrov, D.; Matrosov, I. Raman gas analyzer (RGA): Natural gas measurements. Appl. Spectrosc. 2016, 70, 1770–1776. [Google Scholar] [CrossRef]
- Hanf, S.; Keiner, R.; Yan, D.; Popp, J.; Frosch, T. Fiber-enhanced Raman multigas spectroscopy: A versatile tool for environmental gas sensing and breath analysis. Anal. Chem. 2014, 86, 5278–5285. [Google Scholar] [CrossRef]
- Hanf, S.; Bogozi, T.; Keiner, R.; Frosch, T.; Popp, J. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Anal. Chem. 2015, 87, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Wan, F.; Zhou, F.; Wang, J.; Kong, W.; Chen, W. Fiber-Enhanced Raman Spectroscopy for Trace-Gas Sensing in the High-Concentration Gas Background With an Anti-Resonant Hollow Core Fiber. Front. Phys. 2022, 10, 459. [Google Scholar] [CrossRef]
- Gomez Velez, J.; Muller, A. Purcell-enhanced microcavity Raman scattering from pressurized gases. Appl. Phys. Lett. 2018, 112, 041107. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Wang, J.; Tang, J.; Shi, Y.; Wan, F. Multigas analysis by cavity-enhanced Raman spectroscopy for power transformer diagnosis. Anal. Chem. 2020, 92, 5969–5977. [Google Scholar] [CrossRef] [PubMed]
- Salter, R.; Chu, J.; Hippler, M. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. Analyst 2012, 137, 4669–4676. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Tan, Y.; Qu, Z.; Sun, Y.; Liu, A.; Hu, S. Multiple Gas Detection by Cavity-Enhanced Raman Spectroscopy with Sub-ppm Sensitivity. Anal. Chem. 2023, 95, 5652–5660. [Google Scholar] [CrossRef]
- Tuesta, A.; Fisher, B.; Skiba, A.; Williams, L.; Osborn, M. Low-pressure multipass Raman spectrometer. Appl. Opt. 2021, 60, 773–784. [Google Scholar] [CrossRef]
- Li, X.; Xia, Y.; Zhan, L.; Huang, J. Near-confocal cavity-enhanced Raman spectroscopy for multitrace-gas detection. Opt. Lett. 2008, 33, 2143–2145. [Google Scholar] [CrossRef]
- Velez, J.; Muller, A. Trace gas sensing using diode-pumped collinearly detected spontaneous Raman scattering enhanced by a multipass cell. Opt. Lett. 2020, 45, 133–136. [Google Scholar] [CrossRef]
- Velez, J.; Muller, A. Spontaneous Raman scattering at trace gas concentrations with a pressurized external multipass cavity. Meas. Sci. Technol. 2021, 32, 045501. [Google Scholar] [CrossRef]
- Petrov, D. Multipass optical system for a Raman gas spectrometer. Appl. Opt. 2016, 55, 9521–9525. [Google Scholar] [CrossRef]
- Kim, H.; Zubairova, A.; Aldén, M.; Brackmann, C. Signal-enhanced Raman spectroscopy with a multi-pass cavity for quantitative measurements of formaldehyde, major species and temperature in a one-dimensional laminar DME-air flame. Combust. Flame 2022, 244, 112221. [Google Scholar] [CrossRef]
- Singh, J.; Muller, A. Isotopic trace analysis of water vapor with multipass cavity Raman scattering. Analyst 2021, 146, 6482–6489. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Liu, I.; Liu, H.; Chou, P.; Liou, J.; Liu, W. Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment. Sens. Actuators B Chem. 2015, 211, 303–309. [Google Scholar] [CrossRef]
- Luo, N.; Wang, C.; Zhang, D.; Guo, M.; Wang, X.; Cheng, Z.; Xu, J. Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sens. Actuators B Chem. 2022, 354, 130982. [Google Scholar] [CrossRef]
- Stancik, A.; Brauns, E. A simple asymmetric lineshape for fitting infrared absorption spectra. Vib. Spectrosc. 2008, 47, 66–69. [Google Scholar] [CrossRef]
- Guo, J.; Luo, Z.; Liu, Q.; Yang, D.; Dong, H.; Huang, S.; Kong, A.; Wu, L. High-sensitivity Raman gas probe for in situ multi-component gas detection. Sensors 2021, 21, 3539. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.; Aydin, M.; Crotwell, A.; Pétron, G.; Severinghaus, J.; Krummel, P.; Langenfelds, R.; Saltzman, E. H2 in Antarctic firn air: Atmospheric reconstructions and implications for anthropogenic emissions. Proc. Natl. Acad. Sci. USA 2021, 118, e2103335118. [Google Scholar] [CrossRef]
Method | Numerical Curve Integral | LSQF Data Comparison | Gaussian Fitting | Average |
---|---|---|---|---|
Description | Summation over predefined number of bins around peak | Determination of scale factor between test and reference sample spectrum | Least-squares function fitting to retrieve peak amplitude | |
No O normalization | 0.03 | 0.06 | 0.04 | 0.01 |
O area normalization | 0.06 | 0.1 | 0.03 | 0.06 |
O LSQF data comparison normalization | 0.06 | 0.03 | 0.08 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.; Muller, A. High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering. Sensors 2023, 23, 5171. https://doi.org/10.3390/s23115171
Singh J, Muller A. High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering. Sensors. 2023; 23(11):5171. https://doi.org/10.3390/s23115171
Chicago/Turabian StyleSingh, Jaspreet, and Andreas Muller. 2023. "High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering" Sensors 23, no. 11: 5171. https://doi.org/10.3390/s23115171
APA StyleSingh, J., & Muller, A. (2023). High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering. Sensors, 23(11), 5171. https://doi.org/10.3390/s23115171