Strain FBG-Based Sensor for Detecting Fence Intruders Using Machine Learning and Adaptive Thresholding
Abstract
1. Introduction
2. Concept and Background
2.1. Concept
2.2. The Fiber Bragg Grating Sensor
2.3. Machine Learning Algorithms
2.3.1. Linear Discriminant Analysis
2.3.2. Logistic Regression
2.4. The Short-Term Average/Long-Term Average (STA/LTA) Algorithm
3. Experimental Setup and Data Acquisition
3.1. Experiment Setup
3.2. Data Acquisition
4. Data Separation Verification
5. Results and Discussions
5.1. First Scenario: Directly Using the ML Models
5.2. Second Scenario: Using the STA/LTA Algorithm as a Pre-Processing Function before the ML Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, Z.; Chin, K.; Qu, R.; Cai, H. Fundamentals of Optical Fiber Sensors; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 226. [Google Scholar]
- Pendão, C.; Silva, I. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef] [PubMed]
- Esmail, M.A.; Ali, J.; Almohimmah, E.; Almaiman, A.; Ragheb, A.M.; Alshebeili, S. Sagnac Loop Based Sensing System for Intrusion Localization Using Machine Learning. Photonics 2022, 9, 275. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Gui, X.; Li, Z.; Fu, X.; Guo, H.; Wang, Y.; Wang, C.; Wang, J.; Jiang, D. Distributed Optical Fiber Sensing and Applications Based on Large-scale Fiber Bragg Grating Array. J. Light. Technol. 2023, 1–14. [Google Scholar] [CrossRef]
- Kandamali, D.F.; Cao, X.; Tian, M.; Jin, Z.; Dong, H.; Yu, K. Machine learning methods for identification and classification ofevents in φ-OTDR systems: A review. Appl. Opt. 2022, 61, 2975–2997. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tian, M.; Liu, T.; Jiang, J.; Ding, Z.; Chen, Q.; Ma, C.; He, C.; Hu, H.; Zhang, X. A High-Efficiency Multiple Events Discrimination Method in Optical Fiber Perimeter Security System. J. Light. Technol. 2015, 33, 4885–4890. [Google Scholar] [CrossRef]
- Lyu, C.; Jiang, J.; Huo, Z. Open-Set Events Identification Based on Deep Metric-Learning for DMZI Perimeter System. IEEE Sens. J. 2020, 20, 13620–13628. [Google Scholar] [CrossRef]
- Lyu, C.; Huo, Z.; Liu, Y.; Cheng, X.; Jiang, J.; Alimasi, A.; Yang, J.; Su, H. Robust Intrusion Events Recognition Methodology for Distributed Optical Fiber Sensing Perimeter Security System. IEEE Trans. Instrum. Meas. 2021, 70, 9505109. [Google Scholar] [CrossRef]
- Lyu, C.; Jiang, J.; Li, B.; Huo, Z.; Yang, J. Abnormal events detection based on RP and inception network using distributed optical fiber perimeter system. Opt. Lasers Eng. 2021, 137, 106377. [Google Scholar] [CrossRef]
- Mi, Q.; Yu, H.; Xiao, Q.; Wu, H. Intrusion behavior classification method applied in a perimeter security monitoring system. Opt. Express 2021, 29, 8592–8605. [Google Scholar] [CrossRef]
- Campanella, C.E.; Cuccovillo, A.; Campanella, C.; Yurt, A.; Passaro, V.M. Fibre Bragg grating based strain sensors: Review of technology and applications. Sensors 2018, 18, 3115. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.K.; Wan, K.T.; Inaudi, D.; Bao, X.; Habel, W.; Zhou, Z.; Ou, J.; Ghandehari, M.; Wu, H.C.; Imai, M. Optical fiber sensors for civil engineering applications. Mater. Struct. 2015, 48, 871–906. [Google Scholar] [CrossRef]
- Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A review of railway infrastructure monitoring using fiber optic sensors. Sens. Actuators A Phys. 2020, 303, 111728. [Google Scholar] [CrossRef]
- Malakzadeh, A.; Mansoursamaei, M.; Pashaie, R. Simultaneous measurement of temperature and strain based on peak power changes and wavelength shift using only one uniform fiber bragg grating. Opt. Quantum Electron. 2021, 53, 208. [Google Scholar] [CrossRef]
- Gholampour, M.; Mansoursamaei, M.; Malakzadeh, A.; Mansoursamaei, F. Comparison of FWHM and peak power techniques for simultaneous measurement of strain and temperature in FBG sensors. Opt. Quantum Electron. 2023, 55, 117. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Zhu, J. Investigation of Gesture Recognition Based on Optical Fiber Bragg Grating Sensors. Measurement 2023, 209, 112498. [Google Scholar] [CrossRef]
- Rakshit, S.; Dhanalakshmi, S.; Chakravartula, V.; Nandini, P.; Kumar, R. Investigation of Peak Detection Algorithms for Fiber Bragg Grating Interrogation based Sensing Systems for Temperature, Depth and Salinity Measurements. J. Phys. Conf. Ser. 2021, 2007, 012057. [Google Scholar] [CrossRef]
- Tosi, D. Review and analysis of peak tracking techniques for fiber Bragg grating sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef]
- Negri, L.; Nied, A.; Kalinowski, H.; Paterno, A. Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement. Sensors 2011, 11, 3466–3482. [Google Scholar] [CrossRef]
- Barino, F.O.; dos Santos, A.B. LPG interrogator based on FBG array and artificial neural network. IEEE Sens. J. 2020, 20, 14187–14194. [Google Scholar] [CrossRef]
- Li, S.; Ren, S.; Chen, S.; Yu, B. Improvement of Fiber Bragg Grating Wavelength Demodulation System by Cascading Generative Adversarial Network and Dense Neural Network. Appl. Sci. 2022, 12, 9031. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, S.; Xia, T.; Liu, Z.; Li, Z. Spectral demodulation of fiber Bragg grating sensor based on deep convolutional neural networks. J. Light. Technol. 2022, 40, 4429–4435. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, C.; Lu, Z.; Zheng, Y.; Zhang, Y. An intelligent leakage detection method for diaphragm wall joints based on fiber Bragg grating sensors and intelligent algorithms. Measurement 2022, 197, 111339. [Google Scholar] [CrossRef]
- Li, S.; Qiu, Y.; Jiang, J.; Wang, H.; Nan, Q.; Sun, L. Identification of Abnormal Vibration Signal of Subway Track Bed Based on Ultra-Weak FBG Sensing Array Combined with Unsupervised Learning Network. Symmetry 2022, 14, 1100. [Google Scholar] [CrossRef]
- Nascimento, K.P.; Frizera-Neto, A.; Marques, C.; Leal-Junior, A.G. Machine learning techniques for liquid level estimation using FBG temperature sensor array. Opt. Fiber Technol. 2021, 65, 102612. [Google Scholar] [CrossRef]
- Djurhuus, M.S.; Schmauss, B.; Clausen, A.T.; Zibar, D. Simultaneous temperature estimation of multiple gratings using a multi-layer neural network. IEEE Photonics Technol. Lett. 2020, 32, 1257–1260. [Google Scholar] [CrossRef]
- Allwood, G.; Wild, G.; Hinckley, S. Optical fiber sensors in physical intrusion detection systems: A review. IEEE Sens. J. 2016, 16, 5497–5509. [Google Scholar] [CrossRef]
- Lu, H.; Fang, N.; Wang, L. Signal identification based on modified filter bank feature and generalized regression neural network for optical fiber perimeter sensing. Opt. Fiber Technol. 2022, 72, 102993. [Google Scholar] [CrossRef]
- Wu, H.; Rao, Y.; Tang, C.; Wu, Y.; Gong, Y. A novel FBG-based security fence enabling to detect extremely weak intrusion signals from nonequivalent sensor nodes. Sens. Actuators A Phys. 2011, 167, 548–555. [Google Scholar] [CrossRef]
- Catalano, A.; Bruno, F.; Pisco, M.; Cutolo, A.; Cusano, A. Intrusion detection system for the protection of railway assets by using fiber Bragg grating sensors: A case study. In Proceedings of the 2014 Third Mediterranean Photonics Conference, Trani, Italy, 7–9 May 2014; pp. 1–3. [Google Scholar]
- Wu, H.; Qian, Y.; Zhang, W.; Li, H.; Xie, X. Intelligent detection and identification in fiber-optical perimeter intrusion monitoring system based on the FBG sensor network. Photonic Sens. 2015, 5, 365–375. [Google Scholar] [CrossRef][Green Version]
- Ormiston, R.; Nguyen, T.; Coughlin, M.; Adhikari, R.X.; Katsavounidis, E. Noise reduction in gravitational-wave data via deep learning. Phys. Rev. Res. 2020, 2, 033066. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, J.; Liu, T. Wavelength detection in spectrally overlapped FBG sensor network using extreme learning machine. IEEE Photonics Technol. Lett. 2014, 26, 2031–2034. [Google Scholar] [CrossRef]
- Akram, J.; Peter, D.; Eaton, D. A k-mean characteristic function for optimizing short-and long-term-average-ratio-based detection of microseismic events. Geophysics 2019, 84, KS143–KS153. [Google Scholar] [CrossRef]
- Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I.; Zibar, D.; Ruffini, M.; Tornatore, M. An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 2018, 21, 1383–1408. [Google Scholar] [CrossRef]
- Khan, F.N.; Fan, Q.; Lu, C.; Lau, A.P.T. An optical communication’s perspective on machine learning and its applications. J. Light. Technol. 2019, 37, 493–516. [Google Scholar] [CrossRef]
- Zibar, D.; Piels, M.; Jones, R.; Schäeffer, C.G. Machine learning techniques in optical communication. J. Light. Technol. 2015, 34, 1442–1452. [Google Scholar] [CrossRef]
- Carvalho, G.d.A.; Minnett, P.J.; Ebecken, N.F.F.; Landau, L. Classification of Oil Slicks and Look-Alike Slicks: A Linear Discriminant Analysis of Microwave, Infrared, and Optical Satellite Measurements. Remote Sens. 2020, 12, 2078. [Google Scholar] [CrossRef]
- Adebiyi, M.O.; Arowolo, M.O.; Mshelia, M.D.; Olugbara, O.O. A Linear Discriminant Analysis and Classification Model for Breast Cancer Diagnosis. Appl. Sci. 2022, 12, 11455. [Google Scholar] [CrossRef]
- Chatterjee, I.; Goršič, M.; Hossain, M.S.; Clapp, J.D.; Novak, V.D. Automated Classification of Dyadic Conversation Scenarios using Autonomic Nervous System Responses. IEEE Trans. Affect. Comput. 2023, 1–8. [Google Scholar] [CrossRef]
- Singh, G.; Pal, Y.; Dahiya, A.K. Classification of Power Quality Disturbances using Linear Discriminant Analysis. Appl. Soft Comput. 2023, 138, 110181. [Google Scholar] [CrossRef]
- Jeppesen, J.; Christensen, J.; Johansen, P.; Beniczky, S. Personalized seizure detection using logistic regression machine learning based on wearable ECG-monitoring device. Seizure 2023, 107, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Rajoub, B. Characterization of biomedical signals: Feature engineering and extraction. In Biomedical Signal Processing and Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 29–50. [Google Scholar]
- Guo, Y.; Hastie, T.; Tibshirani, R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2007, 8, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Sayad, S. Linear Discriminant Analysis. Available online: http://www.saedsayad.com/lda.htm (accessed on 15 January 2023).
- Robles-Velasco, A.; Cortés, P.; Muñuzuri, J.; Onieva, L. Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliab. Eng. Syst. Saf. 2020, 196, 106754. [Google Scholar] [CrossRef]
- Hidayat, T.H.J.; Ruldeviyani, Y.; Aditama, A.R.; Madya, G.R.; Nugraha, A.W.; Adisaputra, M.W. Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as classifier. Procedia Comput. Sci. 2022, 197, 660–667. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Anchal, S.; Kar, S. Detection of an Intruder and Prediction of His State of Motion by Using Seismic Sensor. IEEE Sens. J. 2017, 18, 703–712. [Google Scholar] [CrossRef]
- Micron-Optics. Micron-Optics Optical Strain Gage—Model OS3100. Available online: http://micronoptics.ru/uploads/library/documents/Datasheets/Micron%20Optics%20-%20os3100.pdf (accessed on 1 March 2022).
- Vujnovic, S.; Marjanovic, A.; Djurovic, Z. Acoustic contamination detection using QQ-plot based decision scheme. Mech. Syst. Signal Process. 2019, 116, 1–11. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Ibrahim, A.B.; Seddiq, Y.M.; Meftah, A.H.; Alghamdi, M.; Selouani, S.A.; Qamhan, M.A.; Alotaibi, Y.A.; Alshebeili, S.A. Optimizing arabic speech distinctive phonetic features and phoneme recognition using genetic algorithm. IEEE Access 2020, 8, 200395–200411. [Google Scholar] [CrossRef]
- Saif, W.S.; Alshawi, T.; Esmail, M.A.; Ragheb, A.; Alshebeili, S. Separability of Histogram Based Features for Optical Performance Monitoring: An Investigation Using t-SNE Technique. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Kuang, Y.; Guo, Y.; Xiong, L.; Liu, W. Packaging and temperature compensation of fiber Bragg grating for strain sensing: A survey. Photonic Sens. 2018, 8, 320–331. [Google Scholar] [CrossRef]
Class | Label |
---|---|
No intruder | 0 |
Intruder | 1 |
Wind | 2 |
Parameter | Value |
---|---|
Elongation % | 22 |
Tensile Strength MPa | 370 |
Yield Strength (0.2%) MPa | 300 |
Shear Strength MPa | 230 |
Hardness Brinell | 100 |
Parameters | Specification |
---|---|
Output power (continuous wave) | 0.06 mW and 0.25 mW |
Wavelength sweeping range | 1510 to 1590 nm |
Wavelength accuracy | 1 pm |
Dynamic range | 40 dB |
Hardware resolution | 16 bit |
Scan rate | 10 Hz |
Parameters | Specification |
---|---|
Gage length | 22 mm |
Peak wavelength | 1524.3 nm |
Strain sensitivity | ∼1.4 pm/ |
Peak reflectivity | >70% |
FWHM | 0.25 nm |
Operating temperature range | −40 to C |
Strain limit |
Parameters | Specification |
---|---|
Power | 600 W |
No load speed | Max of 16,000/min |
Air volume | 3.5 m/min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elleathy, A.; Alhumaidan, F.; Alqahtani, M.; Almaiman, A.S.; Ragheb, A.M.; Ibrahim, A.B.; Ali, J.; Esmail, M.A.; Alshebeili, S.A. Strain FBG-Based Sensor for Detecting Fence Intruders Using Machine Learning and Adaptive Thresholding. Sensors 2023, 23, 5015. https://doi.org/10.3390/s23115015
Elleathy A, Alhumaidan F, Alqahtani M, Almaiman AS, Ragheb AM, Ibrahim AB, Ali J, Esmail MA, Alshebeili SA. Strain FBG-Based Sensor for Detecting Fence Intruders Using Machine Learning and Adaptive Thresholding. Sensors. 2023; 23(11):5015. https://doi.org/10.3390/s23115015
Chicago/Turabian StyleElleathy, Ahmad, Faris Alhumaidan, Mohammed Alqahtani, Ahmed S. Almaiman, Amr M. Ragheb, Ahmed B. Ibrahim, Jameel Ali, Maged A. Esmail, and Saleh A. Alshebeili. 2023. "Strain FBG-Based Sensor for Detecting Fence Intruders Using Machine Learning and Adaptive Thresholding" Sensors 23, no. 11: 5015. https://doi.org/10.3390/s23115015
APA StyleElleathy, A., Alhumaidan, F., Alqahtani, M., Almaiman, A. S., Ragheb, A. M., Ibrahim, A. B., Ali, J., Esmail, M. A., & Alshebeili, S. A. (2023). Strain FBG-Based Sensor for Detecting Fence Intruders Using Machine Learning and Adaptive Thresholding. Sensors, 23(11), 5015. https://doi.org/10.3390/s23115015