Evaluation of the Health Status of Indonesian Watersheds Using Impervious Surface Area as an Indicator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Method
2.2.1. Estimating Non-Vegetation Fraction from MODIS-NDVI Time Series
2.2.2. Generation of Consistent NTL Time Series from 2003 to 2021
2.2.3. Building Relationships between ISA% and NTLcorrected
2.2.4. Assessing the Health Status of Indonesian Watersheds
2.2.5. Accuracy Assessment
3. Results
3.1. Annual ISA% Distribution Maps in Indonesia
3.2. Performance of the Developed Method
3.3. Watersheds Evaluation in Indonesia
4. Discussion
4.1. Improved Relationships between ISA% and NTL Data
4.2. Reliability of the Generated ISA% Distribution Maps
4.3. Watershed Health Status in Indonesia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
CV | Coefficient of Variation |
DMSP-OLS | Defense Meteorological Satellite Program-Operational Linescan System |
DNB | Day and Night Band |
EANTLI | Enhanced vegetation index Adjusted Nighttime Light Index |
EOG | Earth Observation Group |
EVI | Enhanced Vegetation Index |
FCLS | Fully Constrained Least Squares |
GAIA | Global Artificial Impervious Area |
GDP | Gross Domestic Product |
HydroSHEDS | Hydrological data and maps based on SHuttle Elevation Derivatives |
ISA | Impervious Surface Area |
ISA% | Impervious Surface Area Percentage |
MAPD | Mean Absolute Percentage Difference |
MNF | Minimum Noise Fraction |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NDVI | Normalized Difference Vegetation Index |
NOAA | National Oceanic and Atmospheric Administration |
NTL | Nighttime Light |
RMSD | Mean Square Difference |
SMA | Spectral Mixture Analysis |
SNPP | Suomi National Polar-orbiting Partnership |
TMA | Temporal Mixture Analysis |
TSOL | Total Sum of Light |
VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Weng, Q. Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. Environ. Manag. 2001, 28, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Strohbach, M.W.; Döring, A.O.; Möck, M.; Sedrez, M.; Mumm, O.; Schneider, A.; Weber, S.; Schröder, B. The “Hidden Urbanization”: Trends of Impervious Surface in Low-Density Housing Developments and Resulting Impacts on the Water Balance. Front. Environ. Sci. 2019, 7, 29. [Google Scholar] [CrossRef]
- Kuang, W. Mapping global impervious surface area and green space within urban environments. Sci. China Earth Sci. 2019, 62, 1591–1606. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, K.; Li, M.; Brown, R.D.; Jaber, F.H. How does increasing impervious surfaces affect urban flooding in response to climate variability? Ecol. Indic. 2020, 118, 106774. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. The Impact of Impervious Surface on Water Quality and Its Threshold in Korea. Water 2016, 8, 111. [Google Scholar] [CrossRef]
- Schueler, T.R. The importance of imperviousness. Watershed Prot. Tech. 1994, 1, 100–111. [Google Scholar]
- Bauer, M.E.; Heinert, N.J.; Doyle, J.K.; Yuan, F. Impervious surface mapping and change monitoring using Landsat remote sensing. In Proceedings of the ASPRS Annual Conference, Denver, CO, USA, 24–28 May 2004. [Google Scholar]
- Yang, F.; Matsushita, B.; Fukushima, T.; Yang, W. Temporal mixture analysis forestimating impervious surface area from multi-temporal MODIS NDVI data in Japan. ISPRS J. Photogramm. Remote Sens. 2012, 72, 90–98. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Yang, W.; Fukushima, T. Mapping the human footprint from satellite measurements in Japan. ISPRS J. Photogramm. Remote Sens. 2014, 88, 80–90. [Google Scholar] [CrossRef]
- Pok, S.; Matsushita, B.; Fukushima, T. An easily implemented method to estimate impervious surface area on a large scale from MODIS time-series and improved DMSP-OLS nighttime light data. ISPRS J. Photogramm. Remote Sens. 2017, 133, 104–115. [Google Scholar] [CrossRef]
- Zhuo, L.; Shi, Q.; Tao, H.; Zheng, J.; Li, Q. An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data. ISPRS J. Photogramm. Remote Sens. 2018, 142, 64–77. [Google Scholar] [CrossRef]
- Phinn, S.; Stanford, M.; Scarth, P.; Murray, A.T.; Shyy, P.T. Monitoring the composition of urban environments based on the vegetation–impervious surface–soil (VIS) model by subpixel analysis techniques. Int. J. Remote Sens. 2002, 23, 4131–4153. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Fukushima, T. A pre-screened and normalized multiple endmember spectral mixture analysis for mapping impervious surface area in Lake Kasumigaura Basin, Japan. ISPRS J. Photogramm. Remote Sens. 2010, 65, 479–490. [Google Scholar] [CrossRef]
- Parekh, J.R.; Poortinga, A.; Bhandari, B.; Mayer, T.; Saah, D.; Chishtie, F. Automatic detection of impervious surfaces from remotely sensed data using deep learning. Remote Sens. 2021, 13, 3166. [Google Scholar] [CrossRef]
- Tsutsumida, N.; Comber, A.; Barrett, K.; Saizen, I.; Rustiadi, E. Sub-pixel classification of MODIS EVI for annual mappings of impervious surface areas. Remote Sens. 2016, 8, 143. [Google Scholar] [CrossRef]
- Zhuo, L.; Zheng, J.; Zhang, X.; Li, J.; Liu, L. An improved method of night-time light saturation reduction based on EVI. Int. J. Remote Sens. 2015, 36, 4114–4130. [Google Scholar] [CrossRef]
- Matsushita, B.; Pok, S.; Jiang, D.; Hamzah, R. An improved method for estimating the percentage impervious surface area from MODIS and DMSP-OLS night time light data. Geoinformatics Geostat. Overv. 2018, S3, 003. [Google Scholar]
- Miller, S.D.; Straka, W., III; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Walther, A.; Heidinger, A.K.; Weiss, S.C. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Hsu, F.C.; Baugh, K.E.; Ghosh, T.; Zhizhin, M.; Elvidge, C.D. DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sens. 2015, 7, 1855–1876. [Google Scholar] [CrossRef]
- Legge, J.; McDivitt, D.; James, F.; Leinbach, T.R.; Susatyo, M.G.; Warman, A.A.; Wolters, O.W. Indonesia. Encyclopedia Britannica 2023. Available online: https://www.britannica.com/place/Indonesia (accessed on 29 March 2023).
- World Data. Population Growth in Indonesia. Available online: https://www.worlddata.info/asia/indonesia/populationgrowth.php (accessed on 30 September 2022).
- World Bank. Population Growth (Annual%)—Indonesia. Available online: https://data.worldbank.org/indicator/SP.POP.GROW?locations=ID (accessed on 30 September 2022).
- The World Factbook. Indonesaia. Available online: https://www.cia.gov/the-world-factbook/countries/indonesia/#geography (accessed on 29 March 2023).
- The World Bank. GDP Growth (Annual%)—Indonesia. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=ID (accessed on 29 March 2023).
- Dharmakarja, A. Does accelerating infrastructure development program reduce unemployment rate? J. Indones. State Budg. Financ. 2021, 3, 113–135. [Google Scholar] [CrossRef]
- Ministry of Finance. Financial Note & State Revenue and Expenditure Budget for 2013; Ministry of Finance of the Republic of Indonesia: Jakarta, Indonesia. Available online: https://web.kemenkeu.go.id/media/6620/nota-keuangan-apbn-2013.pdf (accessed on 28 February 2023).
- Ministry of Finance. Financial Note & State Revenue and Expenditure Budget for 2021; Ministry of Finance of the Republic of Indonesia: Jakarta, Indonesia. Available online: https://web.kemenkeu.go.id/informasi-publik/uu-apbn-dan-nota-keuangan/ (accessed on 28 February 2023).
- Huhne, C.; Slingo, J. Climate: Observations, Projections and Impacts (Indonesia); Met Office: Exeter, Devon, UK, 2011. Available online: http://www.unscn.org/files/NutCC/Indonesia.pdf (accessed on 28 February 2023).
- NOAA Climate Prediction Center. Indonesia/New Guinea. Available online: https://www.cpc.ncep.noaa.gov/products/assessments/assess_97/indo.html (accessed on 5 April 2023).
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhao, N.; Zhou, Y.; Samson, E.L. Correcting incompatible DN values and geometric errors in nighttime lights time-series images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Env. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, C. The integrated use of DMSP-OLS nighttime light and MODIS data for monitoring large-scale impervious surface dynamics: A case study in the Yangtze river delta. Remote Sens. 2014, 6, 9359–9378. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Kuang, W. Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data. Remote Sens. 2017, 9, 375. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. In Proceedings of the Asia-Pacific Advanced Network, Daejeon, Republic of Korea, 19–23 August 2013; Volume 35, pp. 62–69. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS nighttime light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP operational line-scan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.; Tuttle, B.; Ghosh, T.; Pack, D.; Erwin, E.D.; Zhizhin, M. A fifteen-year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- WWF. What Is the Right Spatial and Temporal Scale Needed for a Meaningful CBWT? Available online: https://wwf.medium.com/what-is-the-right-spatial-and-temporal-scale-needed-for-a-meaningful-cbwt-6d19cbabeee2 (accessed on 25 March 2021).
- Heinz, D.C.; Chang, C.I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- Therien, C. Pysptools: Fully Constrained Least Squares (FCLS) Function. Available online: https://pysptools.sourceforge.io/abundance_maps.html#fully-constrained-least-squares-fcls (accessed on 1 April 2021).
- Li, X.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar] [CrossRef]
- Jeswani, R. Evaluation of the consistency of DMSP-OLS and SNPP-VIIRS Night-time Light Datasets. J. Geomat. 2019, 13, 98–105. [Google Scholar]
- Ma, J.; Guo, J.; Ahmad, S.; Li, Z.; Hong, J. Constructing a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light. Remote Sens. 2020, 12, 937. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Pan, J.; Li, J. Spatiotemporal dynamics of electricity consumption in China. Appl. Spat. Anal. 2017, 12, 395–422. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N.; Wang, M. Coupling an intercalibration of radiance-calibrated nighttime light images and land use/cover data for modeling and analyzing the distribution of GDP in Guangdong, China. Sustainability 2016, 8, 108. [Google Scholar] [CrossRef]
- Yang, L.; Cao, J.; Zhuo, L.; Shi, Q. A novel consistency calibration method for DMSP-OLS nighttime stable light time-series images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2621–2631. [Google Scholar] [CrossRef]
- Christopher, N.; Doll, H.; Muller, J.P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO A J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a series of consistent night-time light data (1992–2018) in Southeast Asia by integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1843–1856. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- Brabec, E.; Schulte, S.; Richards, P.L. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. J. Plan. Lit. 2002, 16, 499–514. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Lu, D.; Moran, E.; Hetrick, S. Detection of impervious surface change with multitemporal Landsat images in an urban–rural frontier. ISPRS J. Photogramm. Remote Sens. 2011, 66, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Zhang, Y.; Cheng, Q.; Chao, M.C.; Tsou, J.Y. Comparison of Impervious Surface Dynamics through Vegetation/High-Albedo/Low-Albedo/Soil Model and Socio-Economic Factors. Land 2022, 11, 430. [Google Scholar] [CrossRef]
Data | Year | Data Model | Spatial Resolution | Source |
---|---|---|---|---|
MODIS NDVI (MOD13A2) | 2003, 2004, 2006, 2010, 2012–2021 | Raster | 1 km | LPDAAC/NASA a |
DMSP-OLS annual composites | 2003, 2004, 2006, 2010 | Raster | 1 km | NOAA/NGDC b |
SNPP-VIIRS-DNB annual composites | 2012–2021 | Raster | 750 m | NOAA/NGDC c |
Watershed polygon | 2013 | Vector | - | HydroSHEDS v1 d |
Google Earth image | 2003, 2004, 2006, 2010, 2012–2018 | Raster | 0.5 m | Google Earth |
Year | a | b | c | d | R2 | RMSD |
---|---|---|---|---|---|---|
2003 | −0.0045 | 0.1563 | 2.7992 | 0.1341 | 0.996 | 1.91 |
2004 | −0.0043 | 0.1479 | 2.9148 | −0.3508 | 0.998 | 1.58 |
2006 | −0.0014 | 0.0454 | 3.3163 | −0.7795 | 0.998 | 1.58 |
2010 | −0.0011 | 0.0343 | 3.1720 | −0.4675 | 0.997 | 1.88 |
2012 | −0.0034 | 0.1114 | 3.1167 | −1.3497 | 0.997 | 1.82 |
2013 | −0.0022 | 0.0836 | 2.6518 | −0.2228 | 0.995 | 2.20 |
2014 | −0.0033 | 0.1373 | 2.1018 | 0.1327 | 0.998 | 1.40 |
2015 | −0.0015 | 0.0609 | 2.3866 | −0.5878 | 0.998 | 1.58 |
2016 | −0.0011 | 0.0493 | 2.1517 | 0.0846 | 0.996 | 2.05 |
2017 | −0.0011 | 0.0426 | 2.5180 | 0.2164 | 0.998 | 1.44 |
2018 | −0.0004 | 0.0031 | 2.9631 | 0.0917 | 0.996 | 1.93 |
2019 | −0.0006 | 0.0263 | 2.3739 | 0.9115 | 0.995 | 2.25 |
2020 | −0.0001 | −0.0044 | 2.7183 | 0.4257 | 0.995 | 2.22 |
2021 | −0.0001 | −0.0180 | 3.3164 | −0.1218 | 0.991 | 2.99 |
Year | Estimated ISA (km2) | GAIA (km2) |
---|---|---|
2003 | 3687.35 | 4350.91 |
2004 | 3776.15 | 4465.25 |
2006 | 3912.47 | 4758.85 |
2010 | 4083.74 | 5270.11 |
2012 | 4061.37 | 5706.70 |
2013 | 4378.33 | 6089.81 |
2014 | 4671.75 | 6645.60 |
2015 | 4788.95 | 7537.54 |
2016 | 4931.67 | 8081.03 |
2017 | 6623.52 | 8234.18 |
2018 | 8466.58 | 8398.27 |
2019 | 9065.70 | |
2020 | 9397.09 | |
2021 | 10,505.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzah, R.; Matsushita, B. Evaluation of the Health Status of Indonesian Watersheds Using Impervious Surface Area as an Indicator. Sensors 2023, 23, 4975. https://doi.org/10.3390/s23104975
Hamzah R, Matsushita B. Evaluation of the Health Status of Indonesian Watersheds Using Impervious Surface Area as an Indicator. Sensors. 2023; 23(10):4975. https://doi.org/10.3390/s23104975
Chicago/Turabian StyleHamzah, Rossi, and Bunkei Matsushita. 2023. "Evaluation of the Health Status of Indonesian Watersheds Using Impervious Surface Area as an Indicator" Sensors 23, no. 10: 4975. https://doi.org/10.3390/s23104975