Novel Weigh-in-Motion Pavement Sensor Based on Self-Sensing Nanocomposites for Vehicle Load Identification: Development, Performance Testing, and Validation
Abstract
:1. Introduction
2. Development of Piezoresistive Sensors Based on Self-Sensing Nanocomposites
2.1. Preparation of Self-Sensing Nanocomposites
2.2. Molding and Encapsulation Structure Design
3. Dynamic Response Test for Compressive Stresses
4. Validation of the Developed Sensor for Vehicle Load Identification
4.1. Embedment and Dynamic Weighing in Asphalt Concrete Slab
4.2. Applications for Weigh-in-Motion
5. Conclusions and Discussion
- (1)
- The resistance of the novel piezoresistive sensors is negatively correlated with the magnitude of the external load applied to it, and the relationship satisfies the GaussAmp formula. Moreover, the mean value of the goodness of fit of the GaussAmp formula at the pavement vehicle load loading frequencies (140 N/s, 200 N/s, 260 N/s) reaches 0.99331, indicating that there is a good correlation between the pressure and the rate of change of the resistance at these frequencies, and the pressure applied can be back-calculated from the rate of change of the resistance of the sensor.
- (2)
- Comparing the sensor response fitting curves, it can be seen that the response data of the axle load sensor after burial in the rutting slab are about 0.77 times that before burial according to the burial depth and loading rate selected in the test (the top of the sensor is 2 cm from the surface layer of asphalt concrete after burial, and the loading rate is 140 N/s).
- (3)
- The rutting experiment verifies that the sensor has a high sensitivity to the dynamic load, and the vehicle load and speed information can be obtained by analyzing the peak/trough magnitude and frequency of the output electrical signal.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, B.; Wang, N.; Wang, Y. The role of different transportation modes in China’s national economy: An input–output analysis. Transp. Policy 2022, 127, 92–102. [Google Scholar] [CrossRef]
- Hamersma, M.; Heinen, E.; Tillema, T.; Arts, J. New highway development in the Netherlands: A residents’ perspective. Transp. Res. Part D Transp. Environ. 2017, 51, 326–339. [Google Scholar] [CrossRef]
- Seyedabrishami, S.; Izadi, A.R.; Rayaprolu, H.S.; Moeckel, R. Car ownership: A joint model for number of cars and fuel types. Transp. Res. Procedia 2019, 41, 572–576. [Google Scholar] [CrossRef]
- Onokala, P.C.; Olajide, C.J. Problems and Challenges Facing the Nigerian Transportation System Which Affect Their Contribution to the Economic Development of the Country in the 21st Century. Transp. Res. Procedia 2020, 48, 2945–2962. [Google Scholar] [CrossRef]
- Jiang, C.; Hao, C.; Zeng, M.; Wang, Y.; Liu, P. Formation and evolution mechanisms of truck overweight phenomenon in mainland China: Systematic and historical perspectives. Saf. Sci. 2023, 159, 106005. [Google Scholar] [CrossRef]
- Alhaji, M.M.; Alhassan, M.; Adejumo, T.W.; Abdulkadir, H. Road pavement collapse from overloaded trucks due to traffic diversion: A case study of Minna-Kateregi-Bida Road, Nigeria. Eng. Fail. Anal. 2022, 131, 105829. [Google Scholar] [CrossRef]
- Moreno-Quintero, E.; Fowkes, T.; Watling, T. Modelling planner–carrier interactions in road freight transport: Optimisation of road maintenance costs via overloading control. Transp. Res. Part E Logist. Transp. Rev. 2013, 50, 68–83. [Google Scholar] [CrossRef]
- Júnior, C.L.; Brito, L.A.; Heller, L.F.; Schreinert, G.G.; Núñez, W.P.; Ceratti, J.A.; Merighi, C. Impact on pavement deterioration due to overload vehicle regulation in Brazil. Transp. Res. Procedia 2020, 45, 842–849. [Google Scholar] [CrossRef]
- Aggarwal, A.; Parameswaran, L. Effect of Overweight Trucks on Fatigue Damage of a Bridge. In Advances in Structural Engineering; Springer: New Delhi, India, 2015; pp. 2483–2491. [Google Scholar]
- Jeongho, O.; Fernando, E.G.; Lytto, R.L. Evaluation of damage potential for pavements due to overweight truck traffic. J. Transp. Eng. 2007, 133, 308–317. [Google Scholar]
- Xu, W.Z. Risk problems and management countermeasures of cargo overloading in logistics. Commer. Cult. 2021, 23, 22–23. [Google Scholar]
- Huang, W.Y.; Wang, X.D.; Sun, L.J. Characteristics of Overloaded Freight and Relative Traffic Parameter of Asphalt Pavements. Highway 2003, 5, 56–59. [Google Scholar]
- Zhao, Q.; Liu, Y.; Wang, L.; Yang, H.; Cao, D. Design method for piezoelectric cantilever beam structure under low frequency condition. Int. J. Pavement Res. Technol. 2017, 11, 153–159. [Google Scholar] [CrossRef]
- Han, Z.; Li, L.; Cai, X.; Dong, X. Research on dynamic weighing highway preventive system based on bending plate sensor. Transducer Microsyst. Technol. 2015, 34, 64–69. [Google Scholar]
- Xue, W.; Wang, D.; Wang, L. A Review and Perspective about Pavement Monitoring. Int. J. Pavement Res. Technol. 2012, 5, 295–302. [Google Scholar]
- Xue, W.; Wang, D.; Wang, L.; Druta, C. Pavement Health Monitoring System Based on an Embedded Sensing Network. J. Mater. Civ. Eng. 2014, 26, 04014072. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Cheng, X.; Zhou, Y.; Yang, S.; Zhang, X.; Chen, C.; Yang, T.; Pan, H.; Xie, G.; et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867. [Google Scholar] [CrossRef] [PubMed]
- Rollings, R.S.; Pittman, D.W. Field Instrumentation and Performance Monitoring of Rigid Pavements. J. Transp. Eng. 1992, 118, 361–370. [Google Scholar] [CrossRef]
- Finogeev, A.; Finogeev, A.N.; Fionova, L.; Lyapin, A.; Lychagin, K.A. Intelligent monitoring system for smart road environment. J. Ind. Inf. Integr. 2019, 15, 15–20. [Google Scholar] [CrossRef]
- Fedorov, A.Y.; Kosheleva, N.A.; Matveenko, V.P.; Serovaev, G.S. Strain measurement and stress analysis in the vicinity of a fiber Bragg grating sensor embedded in a composite material. Compos. Struct. 2020, 239, 111844. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, L.; Xu, W.; Gao, Z.; Yan, G. Monitoring Traffic Information with a Developed Acceleration Sensing Node. Sensors 2017, 17, 2817. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Xiong, H.; Luo, R. A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure. Constr. Build. Mater. 2019, 204, 631–642. [Google Scholar] [CrossRef]
- Lu, G.; Renken, L.; Li, T.; Wang, D.; Li, H.; Oeser, M. Experimental study on the polyurethane-bound pervious mixtures in the application of permeable pavements. Constr. Build. Mater. 2019, 202, 838–850. [Google Scholar] [CrossRef]
- Kouakeuo, H.N.; Deffo, Y.T.; Ducharne, B.; Morel, L.; Raulet, M.A.; Tsafack, P.; Garcia-Bravo, J.M.; Newell, B. Embedded printed magnetic needle probes sensor for the real-time control of the local induction state through a laminated magnetic core. J. Magn. Magn. Mater. 2020, 505, 166767. [Google Scholar] [CrossRef]
- Wang, P.; Lu, J.; Huang, Y.; Wang, C. Design and Implementation of Highway Vehicle Weight-in-Motion System of Low-Power Based on Quartz Piezoelectric Sensor. In Proceedings of the 11th International Conference of Chinese Transportation Professionals, Nanjing, China, 14–17 August 2011; pp. 1640–1650. [Google Scholar]
- Ye, Z.; Xiong, H.; Wang, L. Collecting comprehensive traffic information using pavement vibration monitoring data. Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 134–149. [Google Scholar] [CrossRef]
- Bajwa, B.; Coleri, E.; Rajagopal, R.; Varaiya, P.; Flores, C. Development of a Cost-Effective Wireless Vibration Weigh-In-Motion System to Estimate Axle Weights of Trucks. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 443–457. [Google Scholar] [CrossRef]
- Cebon, D.; Winkler, C.B. Multiple-sensor weigh-in-motion: Theory and experiments. Transp. Res. Rec. 1991, 1311, 70–78. [Google Scholar]
- Alavi, S.H.; Mactutis, J.A.; Gibson, S.D.; Papagiannakis, A.T.; Reynaud, D. Performance Evaluation of Piezoelectric Weigh-in-Motion Sensors Under Controlled Field-Loading Conditions. Transp. Res. Rec. J. Transp. Res. Board 2001, 1769, 95–102. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 33001. [Google Scholar] [CrossRef]
- Hou, S.; Lei, J.; Ou, J. Vehicle load monitoring for asphalt concrete pavement based on smart aggregates. J. Vib. Shock 2014, 33, 42–47. [Google Scholar]
- Wang, Z.; Li, L. Research on Dynamic Weighing Data Processing Algorithm Based on Quartz Sensor. Chin. J. Sens. Actuators 2017, 30, 236–241. [Google Scholar]
- Zhao, H.; Tan, C.; Zhang, L.; Qiao, D. Improved identification of vehicular axles in BWIM system based on wavelet transform. J. Hunan Univ. Nat. Sci. 2016, 43, 111–119. [Google Scholar]
- Yang, H.; Guo, M.; Wang, L.; Hou, Y.; Zhao, Q.; Cao, D. Investigation on the factors influencing the performance of piezoelectric energy harvester. Road Mater. Pavement Des. 2017, 18 (Suppl. 3), 180–189. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Zhou, B.; Wei, Y.; Zhao, Q. A preliminary study on the highway piezoelectric power supply system. Int. J. Pavement Res. Technol. 2018, 11, 168–175. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, Y. Feasibility Study for Using Piezoelectric-Based Weigh-In-Motion (WIM) System on Public Roadway. Appl. Sci. 2019, 9, 3098. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, L.; Zhao, K.; Yang, H. Development of a Novel Piezoelectric Sensing System for Pavement Dynamic Load Identification. Sensors 2019, 19, 4668. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, A.; Wang, W. Research progress and application of high temperature piezoelectric ceramic materials. J. Ceram. 2021, 42, 376–388. [Google Scholar]
- Gajda, J.; Sroka, R.; Zeglen, T.; Burnos, P. The influence of temperature on errors of WIM systems employing piezoelectric sensor. Metrol. Meas. Syst. 2013, 20, 171–182. [Google Scholar] [CrossRef]
- Gajda, J.; Sroka, R.; Stencel, M.; Zeglen, T.; Piwowar, P.; Burnos, P. Analysis of the temperature influences on the metrological properties of polymer piezoelectric load sensors applied in Weigh-in-Motion systems. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 772–775. [Google Scholar]
- Xin, X.; Liang, M.; Yao, Z.; Su, L.; Zhang, J.; Li, P.; Sun, C.; Jiang, H. Self-sensing behavior and mechanical properties of carbon nanotubes/epoxy resin composite for asphalt pavement strain monitoring. Constr. Build. Mater. 2020, 257, 119404. [Google Scholar] [CrossRef]
- Xin, X.; Rong, Y.; Su, L.; Qiu, Z.; Yang, C.; Liang, M.; Ji, P.; Zhong, G.; Yao, Z.Y. Dynamic Mechanical and Chemorheology Analysis for the Blended Epoxy System with Polyurethane Modified Resin. J. Renew. Mater. 2022, 10, 1081. [Google Scholar] [CrossRef]
- Su, L.; Luan, X.; Qiu, Z.; Liang, M.; Rong, Y.; Xin, X.; Yao, Z.; Ma, C. Sensing Performance and Optimizing Encapsulation Materials of a Coordinated Epoxy-Encapsulated Sensor for Strain Monitoring of Asphalt Pavement Layered Structures. IEEE Sens. J. 2022, 22, 9811–9823. [Google Scholar] [CrossRef]
- Caporale, A.; Luciano, R.; Scorza, D.; Vantadori, S. Local–nonlocal stress-driven model for multi-cracked nanobeams. Int. J. Solids Struct. 2023, 273, 112230. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Yuan, H.; Ji, X. Design and performance of piezoelectric energy output promotion system for road. Renew. Energy 2022, 197, 443–451. [Google Scholar] [CrossRef]
- Khalili, M.; Vishwakarma, G.; Ahmed, S.; Papagiannakis, A.T. Development of a low-power weigh-in-motion system using cylindrical piezoelectric elements. Int. J. Transp. Sci. Technol. 2022, 11, 496–508. [Google Scholar] [CrossRef]
- Chen, R.; Lin, X.; Kang, X.; Zhong, Z.; Liu, Y.; Zhang, P.; Wu, H. Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing. Tunn. Undergr. Space Technol. 2018, 82, 468–481. [Google Scholar] [CrossRef]
- Dai, W.; Wang, D.; Chen, G. Mechanism of an approach based on bone microstructure to improve the machining quality for bionic multi-size particulate-reinforced composite. Compos. Struct. 2021, 274, 114346. [Google Scholar] [CrossRef]
- Huang, H.; Hua, Y.; Zhang, D.; Wang, L.; Yan, J. Recovery of longitudinal deformational performance of shield tunnel lining by soil Grouting: A case study in Shanghai. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2023, 134, 103929. [Google Scholar] [CrossRef]
- Guo, L.H.; Chen, X.M.; Yu, J.Y.; Tang, Y.M.; Liu, R.; Rogers, R. Pavement deflection vehicle weighing method with embedded piezoelectric sensor. Spie Proc. 2005, 5758, 471–478. [Google Scholar]
- Otto, G.G.; Simonin, J.M.; Piau, J.M.; Cottineau, L.M.; Chupin, O.; Momm, L.; Valente, A.M. Weigh-in-motion (WIM) sensor response model using pavement stress and deflection. Constr. Build. Mater. 2017, 156, 83–90. [Google Scholar] [CrossRef]
- Yuan, S.; Ansari, F.; Liu, X.; Zhao, Y. Optic fiber-based dynamic pressure sensor for WIM system. Sens. Actuators A Phys. 2005, 120, 53–58. [Google Scholar] [CrossRef]
- Visco, R.; Chabot, A.; Chupin, O.; Deloffre, L.; Duhamel, D. A Tool for the Simulation of Moving Load Effects on Asphalt Pavement. Road Mater. Pavement Des. 2010, 11, 227–250. [Google Scholar]
Raw Materials | Specification | Matching Ratio (%) | Quality (g) |
---|---|---|---|
Asphalt | Qilu AH-70 | 4.25 | 559 |
Aggregates | 13–16 mm | 6.00 | 746.4 |
10–13 mm | 14.00 | 1741.8 | |
5–10 mm | 34.00 | 4230 | |
3–5 mm | 17.00 | 2115 | |
0–3 mm | 26.00 | 3234.6 | |
Mineral powder | 0.075 mm | 3.00 | 373.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Zhang, Y.; Jiao, Y.; Wang, J.; Su, L.; Yao, Z. Novel Weigh-in-Motion Pavement Sensor Based on Self-Sensing Nanocomposites for Vehicle Load Identification: Development, Performance Testing, and Validation. Sensors 2023, 23, 4758. https://doi.org/10.3390/s23104758
Liang M, Zhang Y, Jiao Y, Wang J, Su L, Yao Z. Novel Weigh-in-Motion Pavement Sensor Based on Self-Sensing Nanocomposites for Vehicle Load Identification: Development, Performance Testing, and Validation. Sensors. 2023; 23(10):4758. https://doi.org/10.3390/s23104758
Chicago/Turabian StyleLiang, Ming, Yunfeng Zhang, Yuepeng Jiao, Jianjiang Wang, Linping Su, and Zhanyong Yao. 2023. "Novel Weigh-in-Motion Pavement Sensor Based on Self-Sensing Nanocomposites for Vehicle Load Identification: Development, Performance Testing, and Validation" Sensors 23, no. 10: 4758. https://doi.org/10.3390/s23104758