Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset
3.2. Architecture
3.3. Evaluation Criteria
- (a)
- Dice Coefficient: Twice the area of the overlap divided by the total number of the pixels in both images (A and B).
- (b)
- Jaccard Score: The area of overlap between the predicted image and the ground truth is divided by the area of union between the predicted image (A) and ground truth image (B).
3.4. Edge Detection
4. Experimental Results
4.1. Pre-Processing
4.2. Segmentation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abramoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.R. Worldwide glaucoma through the looking glass. Br. J. Ophthalmol. 2006, 90, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Swetha, M.; Chitra Devi, M.; Jayashankari, J.M.E.; Veeralakshmi, P. Automated Diagnosis of Glaucoma Using Cup to Disc Ratio. JETIR 2020, 7, 278–282. [Google Scholar]
- Ronneberger, O.F.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; p. 9351. [Google Scholar]
- Cheng, J.; Liu, J.; Xu, Y.; Yin, F.; Wong, D.W.K.; Tan, N.-M.; Tao, D.; Cheng, C.-Y.; Aung, T.; Wong, T.Y. Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening. IEEE Trans. Med. Imaging 2013, 32, 1019–1032. [Google Scholar] [CrossRef]
- Sarkar, D.C.; Das, S. Automated Glaucoma Detection of Medical Image Using Biogeography Based Optimization. In Advances in Optical Science and Engineering; Springer Proceedings in Physics; Bhattacharya, I., Chakrabarti, S., Reehal, H., Lakshminarayanan, V., Eds.; Springer: Singapore, 2017. [Google Scholar]
- Sun, X.; Xu, Y.; Tan, M.; Fu, H.; Zhao, W.; You, T.; Liu, J. Localizing Optic Disc and Cup for Glaucoma Screening via Deep Object Detection Networks. In Proceedings of the Computational Pathology and Ophthalmic Medical Image Analysis: First International Workshop, COMPAY 2018, and 5th International Workshop, OMIA 2018, Granada, Spain, 16–20 September 2018. [Google Scholar]
- Thakur, N.; Juneja, M. Optic disc and optic cup segmentation from retinal images using hybrid approach. Expert Syst. Appl. 2019, 127, 308–322. [Google Scholar] [CrossRef]
- Sevastopolsky, A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognit. Image Anal. 2017, 27, 618–624. [Google Scholar] [CrossRef]
- Kim, J.; Tran, L.Q.; Chew, E.Y.; Antani, S.K. Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning. In Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), Cordoba, Spain, 5–7 June 2019; pp. 489–494. [Google Scholar]
- Yu, S.; Xiao, D.; Frost, S.; Kanagasingam, Y. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2019, 74, 61–71. [Google Scholar] [CrossRef]
- Al-Bander, B.; Williams, B.M.; Al-Nuaimy, W.; Al-Taee, M.A.; Pratt, H.; Zheng, Y. Dense Fully Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus for Glaucoma Diagnosis. Symmetry 2018, 10, 87. [Google Scholar] [CrossRef]
- Guo, F.; Li, W.; Tang, J.; Zou, B.; Fan, Z. Automated glaucoma screening method based on image segmentation and feature extraction. Med. Biol. Eng. Comput. 2020, 58, 2567–2586. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, J.; Xu, Y.; Wong, D.W.K.; Liu, J.; Cao, X. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. IEEE Trans. Med. Imaging 2018, 37, 1597–1605. [Google Scholar] [CrossRef]
- Bajwa, M.N.S.; Singh, G.A.P.; Neumeier, W.; Malik, M.I.; Dengel, A.; Ahmed, S. G1020: A Benchmark Retinal Fundus Image Dataset for Computer-Aided Glaucoma Detection. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Sudhan, M.B.; Sinthuja, M.; Pravinth Raja, S.; Amutharaj, J.; Charlyn Pushpa Latha, G.; Sheeba Rachel, S.; Anitha, T.; Rajendran, T.; Waji, Y.A. Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model. J. Healthc. Eng. 2022, 2022, 1601354. [Google Scholar] [CrossRef] [PubMed]
- Juneja, M.; Singh, S.; Agarwal, N.; Bali, S.; Gupta, S.; Thakur, N.; Jindal, P. Automated detection of Glaucoma using deep learning convolution network (G-net). Multimed. Tools Appl. 2020, 79, 15531–15553. [Google Scholar] [CrossRef]
- Pascal, L.; Perdomo, O.J.; Bost, X.; Huet, B.; Otalora, S.; Zuluaga, M.A. Multi-task deep learning for glaucoma detection from color fundus images. Sci. Rep. 2022, 12, 12361. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Duan, L.; Cheng, J.; Gu, Z.; Xia, H.; Fu, H.; Li, C.; Liu, J. JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation. IEEE Trans. Biomed. Eng. 2020, 67, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef]
- Liu, H.; Feng, Y.; Xu, H.; Liang, S.; Liang, H.; Li, S.; Zhu, J.; Yang, S.; Li, F. MEA-Net: Multilayer edge attention network for medical image segmentation. Sci. Rep. 2022, 12, 7868. [Google Scholar] [CrossRef]
- Bajwa, M.N.; Malik, M.I.; Siddiqui, S.A.; Dengel, A.; Shafait, F.; Neumeier, W.; Ahmed, S. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med. Inform. Decis. Mak. 2019, 19, 136. [Google Scholar]
- Xie, Z.; Ling, T.; Yang, Y.; Shu, R.; Liu, B.J. Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks. J. Med. Syst. 2020, 44, 96. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Y.; Zhang, H.; Wang, F. Joint disc and cup segmentation based on recurrent fully convolutional network. PLoS ONE 2020, 15, e0238983. [Google Scholar] [CrossRef]
- Hervella, Á.S.; Rouco, J.; Novo, J.; Ortega, M. End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images. Appl. Soft Comput. 2021, 116, 108347. [Google Scholar] [CrossRef]
- Parkhi, P.; Hambarde, B.H. Optical Cup and Disc Segmentation using Deep Learning Technique for Glaucoma Detection. Int. J. Next Gener. Comput. 2023, 14, 44–52. [Google Scholar] [CrossRef]
- Zhou, W.; Ji, J.; Jiang, Y.; Wang, J.; Qi, Q.; Yi, Y. EARDS: EfficientNet and attention-based residual depth-wise separable convolution for joint OD and OC segmentation. Front. Neurosci. 2023, 17, 1139181. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fu, R.; Fang, H.; Zhang, Y.; Xu, Y. MedSegDiff-V2: Diffusion based Medical Image Segmentation with Transformer. arXiv 2023, arXiv:2301.11798. [Google Scholar]
- Sun, G.; Zhang, Z.; Zhang, J.; Zhu, M.; Zhu, X.; Yang, J.; Li, Y. Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef]
- Xue, X.; Wang, L.; Du, W.; Fujiwara, Y.; Peng, Y. Multiple Preprocessing Hybrid Level Set Model for Optic Disc Segmentation in Fundus Images. Sensors 2022, 22, 6899. [Google Scholar] [CrossRef]
- Zaaboub, N.; Sandid, F.; Douik, A.; Solaiman, B. Optic disc detection and segmentation using saliency mask in retinal fundus images. Comput. Biol. Med. 2022, 150, 106067. [Google Scholar] [CrossRef]
- Liu, B.; Pan, D.; Shuai, Z.; Song, H. ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation. Comput. Methods Programs Biomed. 2022, 213, 106530. [Google Scholar] [CrossRef]
- Xiong, H.; Liu, S.; Sharan, R.V.; Coiera, E.; Berkovsky, S. Weak label based Bayesian U-Net for optic disc segmentation in fundus images. Artif. Intell. Med. 2022, 126, 102261. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Cheng, Y. Towards an extended EfficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image. Biomed. Signal Process. Control 2023, 85, 104906. [Google Scholar] [CrossRef]
- Sivaswamy, J.; Krishnadas, S.R.; Joshi, G.D.; Jain, M.; Tabish, A.U. Drishti-gs: Retinal image dataset for optic nerve head(onh) segmentation. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 53–56. [Google Scholar] [CrossRef]
- Sivaswamy, J.; Krishnadas, S.R.; Chakravarty, A.; Joshi, G.D.; Tabish, A.U. A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Pap. 2015, 2, 1–7. [Google Scholar]
- Diaz-Pinto, A.; Morales, S.; Naranjo, V.; Köhler, T.; Mossi, J.M.; Navea, A. CNNs for automatic glaucoma assessment using fundus images: An extensive validation. Biomed. Eng. Online 2019, 18, 29. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Pinto, A.; Colomer, A.; Naranjo, V.; Morales, S.; Xu, Y.; Frangi, A.F. Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Trans. Med. Imaging 2019, 38, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Zilly, J.; Buhmann, J.M.; Mahapatra, D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2017, 55, 28–41. [Google Scholar] [CrossRef]
- Phasuk, S.; Tantibundhit, C.; Poopresert, P.; Yaemsuk, A.; Suvannachart, P.; Itthipanichpong, R.; Chansangpetch, S.; Manassakorn, A.; Tantisevi, V.; Rojanapongpun, P. Automated Glaucoma Screening from Retinal Fundus Image Using Deep Learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019; pp. 904–907. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Y.; Xu, Y.; Zhao, W.; Min, H.; Tan, M.; Liu, J. Conditional Adversarial Transfer for Glaucoma Diagnosis. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019; pp. 2032–2035. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Wong, D.W.K.; Wong, T.Y.; Liu, J. Glaucoma detection based on deep convolutional neural network. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 715–718. [Google Scholar] [CrossRef]
- Li, A.; Cheng, J.; Wong, D.W.K.; Liu, J. Integrating holistic and local deep features for glaucoma classification. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1328–1331. [Google Scholar] [CrossRef]
- Fumero, F.; Sigut, J.F.; Alayón, S.; Gonzalez-Hernandez, M.; Rosa, M.G. Interactive Tool and Database for Optic Disc and Cup Segmentation of Stereo and Monocular Retinal Fundus Images. In Proceedings of the 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2015 in Co-Operation with EUROGRAPHICS, Pilsen, Czech Republic, 8–12 June 2015; pp. 91–97. Available online: http://wscg.zcu.cz/DL/wscg_DL.htm (accessed on 19 March 2023).
- Cerentini, A.; Welfer, D.; d’Ornellas, M.C.; Pereira Haygert, C.J.; Dotto, G.N. Automatic Identification of Glaucoma Using Deep Learning Methods. In MEDINFO 2017: Precision Healthcare Through Informatics: Proceedings of the 16th World Congress on Medical and Health Informatics; Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2017; Volume 245, pp. 318–321. [Google Scholar]
- Orlando, J.I.; Fu, H.; Breda, J.B.; van Keer, K.; Bathula, D.R.; Diaz-Pinto, A.; Fang, R.; Heng, P.-A.; Kim, J.; Lee, J.; et al. Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 2020, 59, 101570. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Goshtasby, A. On the Canny edge detector. Pattern Recognit. 2001, 34, 721–725. [Google Scholar] [CrossRef]
- Wang, S.; Yu, L.; Yang, X.; Fu, C.W.; Heng, P.A. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2485–2495. [Google Scholar] [CrossRef]
- Hervella, Á.S.; Ramos, L.; Rouco, J.; Novo, J.; Ortega, M. Multi-Modal Self-Supervised Pre-Training for Joint Optic Disc and Cup Segmentation in Eye Fundus Images. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 961–965. [Google Scholar]
- Liu, P.; Kong, B.; Li, Z.; Zhang, S.; Fang, R. CFEA: Collaborative Feature Ensembling Adaptation for Domain Adaptation in Unsupervised Optic Disc and Cup Segmentation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; MICCAI 2019. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11768. [Google Scholar] [CrossRef]
- Almubarak, H.; Bazi, Y.; Alajlan, N. Two-Stage Mask-RCNN Approach for Detecting and Segmenting the Optic Nerve Head, Optic Disc, and Optic Cup in Fundus Images. Appl. Sci. 2020, 10, 3833. [Google Scholar] [CrossRef]
- Shah, S.; Kasukurthi, N.; Pande, H. Dynamic region proposal networks for semantic segmentation in automated glaucoma screening. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 578–582. [Google Scholar] [CrossRef]
- Kadambi, S.; Wang, Z.; Xing, E. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1205–1213. [Google Scholar] [CrossRef]
- Jiang, Y.; Tan, N.; Peng, T. Optic Disc and Cup Segmentation Based on Deep Convolutional Generative Adversarial Networks. IEEE Access 2019, 7, 64483–64493. [Google Scholar] [CrossRef]
Dataset | Description | Reference |
---|---|---|
Drishti-GS [35,36] | It contains a total of 101 images. “http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php (accessed on 19 March 2023)” | [11,37,38,39,40] |
ORIGA | It has a total of 650 retinal images that are available publicly on Kaggle. “https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets?select=ORIGA (accessed on 19 March 2023)” | [38,40,41,42,43] |
RIM-ONE-V3 [44] | RIM-ONE is a publicly available dataset of 74 colored fundus images. “http://medimrg.webs.ull.es/research/downloads/ (accessed on 19 March 2023)” | [37,38,40,45] |
REFUGE [46] | It comprises 1200 colored retinal images with 400 images each for testing, validation, and training purposes. “https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets?select=REFUGE (accessed on 19 March 2023)” | [41] |
Dataset | Optic Disc Segmentation | Optic Cup Segmentation | ||
---|---|---|---|---|
Dice/F1 Score | Jaccard Score/IoU | Dice/F1 Score | Jaccard Score/IoU | |
Drishti-GS | 0.943 | 0.893 | 0.889 | 0.801 |
RIM-ONE-V3 | 0.910 | 0.838 | 0.649 | 0.770 |
ORIGA | 0.962 | 0.928 | 0.871 | 0.773 |
REFUGE | 0.965 | 0.933 | 0.902 | 0.824 |
Datasets | Methods | OD Segmentation | OC Segmentation | ||
---|---|---|---|---|---|
DC | JAC | DC | JAC | ||
REFUGE | M-Net [12] | 0.943 | - | 0.831 | - |
M-Ada [25] | 0.958 | - | 0.882 | - | |
EARDS [27] | 0.954 | 0.914 | 0.887 | 0.801 | |
pOSAL [48] | 0.946 | - | 0.875 | - | |
Multi-Model [49] | - | 0.922 | - | 0.790 | |
CFEA [50] | 0.941 | - | 0.862 | - | |
Two-Stage Mask R-CNN [51] | 0.947 | - | 0.854 | - | |
Ours | 0.965 | 0.933 | 0.902 | 0.824 | |
ORIGA | Deep object detection Network [7] | 0.845 | - | 0.845 | - |
JointRCNN [19] | 0.937 | - | 0.794 | - | |
SS-DCGAN [38] | 0.901 | - | - | - | |
Ours | 0.962 | 0.928 | 0.871 | 0.773 | |
Drishti-GS | U-Net [3] | 0.950 | - | 0.800 | - |
[11] | 0.973 | 0.949 | 0.887 | 0.804 | |
FC-DenseNet [12] | 0.949 | 0.904 | 0.828 | 0.711 | |
M-Net [14] | 0.959 | - | 0.866 | - | |
M-Ada [25] | 0.971 | - | 0.910 | - | |
EARDS [27] | 0.974 | 0.949 | 0.915 | 0.849 | |
ResFPN-Net [29] | 0.976 | - | 0.896 | - | |
WRoIM [52] | 0.960 | - | 0.890 | - | |
WGAN [53] | 0.954 | - | 0.840 | - | |
pOSAL [48] | 0.965 | - | 0.858 | - | |
GL-Net [54] | 0.971 | - | 0.905 | - | |
Multi-Model [49] | 0.960 | 0.924 | 0.902 | 0.822 | |
Ours | 0.943 | 0.893 | 0.889 | 0.801 | |
RIM-ONE -V3 | Hybrid [8] | 0.930 | 0.910 | 0.910 | 0.880 |
Modified U-Net [9] | 0.950 | 0.890 | 0.820 | 0.690 | |
ECSD [32] | 0.860 | 0.760 | 0.800 | 0.680 | |
EE-U-Net [34] | 0.950 | 0.880 | 0.860 | 0.760 | |
pOSAL [48] | 0.860 | - | 0.787 | - | |
Ours | 0.910 | 0.830 | 0.640 | 0.770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadisetty, S.; Chodavarapu, R.; Jin, R.; Clements, R.J.; Yu, M. Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation. Sensors 2023, 23, 4668. https://doi.org/10.3390/s23104668
Tadisetty S, Chodavarapu R, Jin R, Clements RJ, Yu M. Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation. Sensors. 2023; 23(10):4668. https://doi.org/10.3390/s23104668
Chicago/Turabian StyleTadisetty, Srikanth, Ranjith Chodavarapu, Ruoming Jin, Robert J. Clements, and Minzhong Yu. 2023. "Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation" Sensors 23, no. 10: 4668. https://doi.org/10.3390/s23104668
APA StyleTadisetty, S., Chodavarapu, R., Jin, R., Clements, R. J., & Yu, M. (2023). Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation. Sensors, 23(10), 4668. https://doi.org/10.3390/s23104668