Modelling and Design of a Dual Depletion PIN Photodiode as Temperature Sensor
Abstract
:1. Introduction
2. Methodology
2.1. Structural Analysis
2.2. Proposed Method
2.3. Semiconductor Properties
3. Method Validation
4. Influence of the Structural Dimensions on the Bandwidth
5. Temperature Sensor
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, J.M.T.; Torres, J.P.N. Frequency response optimization of dual depletion InGaAs/InP PIN photodiodes. Photonic Sens. 2016, 6, 63–70. [Google Scholar] [CrossRef]
- Torres, J.P.; Pereira, J. Frequency Response Simulation Analysis of Waveguide Photodetectors. Appl. Phys. Res. 2017, 9, 4. [Google Scholar] [CrossRef]
- Fernandes, C.M.C.; Pereira, J.M.T. Bandwidth modeling and optimization of PIN photodiodes. In Proceedings of the 2011 IEEE International Conference on Computer as a Tool (EUROCON), Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Amraoui, R.; Aissat, A.; Vilcot, J.P.; Decoster, D. Frequency response optimization of P-I-N photodiode based on InGaAsN lattice matched to GaAs for High-Speed photodetection applications. Opt. Laser Technol. 2022, 145, 107468. [Google Scholar] [CrossRef]
- Rai, V. Temperature sensors and optical sensors. Appl. Phys. B 2007, 88, 297–303. [Google Scholar] [CrossRef]
- Shaker, A.; Salem, M.S.; Zekry, A.; El-Banna, M.; Sayah, G.T.; Abouelatta, M. Identification of power PIN diode design parameters: Circuit and device-based simulation approach. Ain Shams Eng. J. 2021, 12, 3141–3155. [Google Scholar] [CrossRef]
- Alizade, R.; Ghadimi, A. The study of quantum efficiency in PIN photodiodes in terms of temperature and capacitive efects under non-uniform illumination conditions. Opt. Quantum Electron. 2019, 51, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Gu, X.; Kong, Y.; Zheng, Y.; Shi, Y. Responsibility optimization of a high-speed InP/InGaAs photodetector with a back reflector structure. Opt. Express 2022, 30, 4919–4929. [Google Scholar] [CrossRef]
- Malik, D.; Das, U. Design and modeling of an efficient high-speed InGaAs/InP QW waveguide-photodetector. Opt. Quantum Electron. 2023, 55, 353. [Google Scholar] [CrossRef]
- Effenberger, F.J.; Joshi, A.M. Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector. J. Light. Technol. 1996, 14, 1859–1864. [Google Scholar] [CrossRef]
- Hammar, C.; Vinter, B. Calculation of the velocity-field characteristic of n-InP. Solid State Commun. 1972, 11, 751–754. [Google Scholar] [CrossRef]
- Dentan, M.; Cremoux, B.D. Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination. J. Light. Technol. 1990, 8, 1137–1144. [Google Scholar] [CrossRef]
- Verónica Matos, J.P. Numerical analysis and optimization of resonant cavity-enhanced p–i–n photodiodes. In Proceedings of the WSEAS International Multiconference on Circuits, Systems, Communications and Computers—CSCC, Lisbon, Portugal, 30 October–1 November 2014; Volume 1, pp. 62–68. [Google Scholar]
- Jervase, H.B.J.A. Optimization procedure for the design of ultrafast, highly efcient and selective resonant cavity enhanced Schottky photodiodes. IEEE Trans. Electron Devices 2000, 47, 1158–1165. [Google Scholar] [CrossRef]
Temperature | |||||||
---|---|---|---|---|---|---|---|
300 K | 275 K | 325 K | |||||
Parameters | Units | InGaAs | InGaAs | InGaAs | |||
Absorption Coefficient (@1.3 m) | m | * | * | * | |||
Electron Saturation Velocity () | m/s | ||||||
Hole Saturation Velocity () | m/s | ||||||
Electron Mobility () | mVs | * | 1.15 | * | 0.969 | * | |
Hole Mobility () | mVs | * | 0.046 | * | 0.038 | * | |
Electric Permittivity () | F/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques Lameirinhas, R.A.; N. Torres, J.P.; P. Correia V. Bernardo, C. Modelling and Design of a Dual Depletion PIN Photodiode as Temperature Sensor. Sensors 2023, 23, 4599. https://doi.org/10.3390/s23104599
Marques Lameirinhas RA, N. Torres JP, P. Correia V. Bernardo C. Modelling and Design of a Dual Depletion PIN Photodiode as Temperature Sensor. Sensors. 2023; 23(10):4599. https://doi.org/10.3390/s23104599
Chicago/Turabian StyleMarques Lameirinhas, Ricardo A., João Paulo N. Torres, and Catarina P. Correia V. Bernardo. 2023. "Modelling and Design of a Dual Depletion PIN Photodiode as Temperature Sensor" Sensors 23, no. 10: 4599. https://doi.org/10.3390/s23104599
APA StyleMarques Lameirinhas, R. A., N. Torres, J. P., & P. Correia V. Bernardo, C. (2023). Modelling and Design of a Dual Depletion PIN Photodiode as Temperature Sensor. Sensors, 23(10), 4599. https://doi.org/10.3390/s23104599