Performance Analysis of Multihop Full-Duplex NOMA Systems with Imperfect Interference Cancellation and Near-Field Path-Loss
Abstract
:1. Introduction
- We take into account the impact of the imperfect interference cancellation (IC) at all receivers. We consider the near-field path-loss at relays to better capture the short transmission distance from the transmit and receive antennae at the relay.
- We take into account the interhop interference and self-interference at all relays due to the full-duplex protocol. It, as a consequence, makes the mathematical framework more complicated compared with half-duplex relaying where the orthogonal transmission between hops is employed.
- We derive closed-form expressions of the OP and potential throughput (PT) of the considered systems.
- We unveil the impact of the total transmit power on the performance of both OP and PT by employing rigorously mathematical frameworks instead of numerical computations.
- We provide remarks to highlight the influence of elements in the OP framework.
- We also derive the mathematical framework of the baseline system to highlight the advantage of the proposed system.
- We supply numerical results via the Monte Carlo method to verify the accuracy of the derived mathematical framework.
2. System Model
2.1. Channel Modelling
2.1.1. Small-Scale fading
2.1.2. Path-Loss
Far-Field Path-Loss
Near-Field Path-Loss
2.2. Signal-to-Interference-Plus-Noise Ratios (SINRs)
2.2.1. Perfect Interference Cancellation (PIC)
2.2.2. Imperfect Interference Cancellation (IIC)
3. Performance Analysis and Trends
3.1. Performance Trends
3.2. Performance of Baseline System
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 1
Appendix B. Proof of Theorem 2
Appendix C. Proof of Theorem 3
Appendix D. Proof of Proposition 1
References
- Tu, L.T.; Bradai, A.; Ahmed, O.B.; Garg, S.; Pousset, Y.; Kaddoum, G. Energy Efficiency Optimization in LoRa Networks—A Deep Learning Approach. IEEE Intell. Transp. Syst. 2022. Early access. [Google Scholar]
- Kim, M.; Lee, W.; Cho, D.-H. Deep Scanning—Beam Selection Based on Deep Reinforcement Learning in Massive MIMO Wireless Communication System. Electronics 2020, 9, 1844. [Google Scholar] [CrossRef]
- Lee, T.; Jo, O.; Shin, K. CoRL: Collaborative Reinforcement Learning-Based MAC Protocol for IoT Networks. Electronics 2020, 9, 143. [Google Scholar] [CrossRef]
- Van Chien, T.; Tu, L.T.; Chatzinotas, S.; Ottersten, B. Coverage Probability and Ergodic Capacity of Intelligent Reflecting Surface-Enhanced Communication Systems. IEEE Commun. Lett. 2021, 25, 69–73. [Google Scholar] [CrossRef]
- Tran, P.T.; Nguyen, B.C.; Hoang, T.M.; Nguyen, T.N. On Performance of Low-Power Wide-Area Networks with the Combining of Reconfigurable Intelligent Surfaces and Relay. IEEE Trans. Mobile Comput. 2022. Early Access. [Google Scholar] [CrossRef]
- Van Chien, T.; Papazafeiropoulos, A.K.; Tu, L.T.; Chopra, R.; Chatzinotas, S.; Ottersten, B. Outage Probability Analysis of IRS-Assisted Systems Under Spatially Correlated Channels. IEEE Wirel. Commun. Lett. 2021, 10, 1815–1819. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Thang, N.N.; Nguyen, B.C.; Hoang, T.M.; Tran, P.T. Intelligent-Reflecting-Surface-Aided Bidirectional Full-Duplex Communication System With Imperfect Self-Interference Cancellation and Hardware Impairments. IEEE Syst. J. 2022. Early Access. [Google Scholar] [CrossRef]
- Anwar, A.; Seet, B.-C.; Ding, Z. Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks. Sensors 2018, 18, 516. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, M.; Zappone, A.; Lam, T.T.; Debbah, M. System-Level Modeling and Optimization of the Energy Efficiency in Cellular Networks—A Stochastic Geometry Framework. IEEE Trans. Wirel. Commun. 2018, 17, 2539–2556. [Google Scholar] [CrossRef]
- Renzo, M.D.; Zappone, A.; Lam, T.T.; Debbah, M. Spectral-Energy Efficiency Pareto Front in Cellular Networks: A Stochastic Geometry Framework. IEEE Wirel. Commun. Lett. 2019, 8, 424–427. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Y. Modeling and Performance Analysis of Large-Scale Backscatter Communication Networks with Directional Antennas. Sensors 2022, 22, 7260. [Google Scholar] [CrossRef]
- Sadat, H.; Abaza, M.; Mansour, A.; Alfalou, A. A Survey of NOMA for VLC Systems: Research Challenges and Future Trends. Sensors 2022, 22, 1395. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Nguyen, S.Q.; Nguyen, P.X.; Kim, Y.-H. Evaluation of Full-Duplex SWIPT Cooperative NOMA-Based IoT Relay Networks over Nakagami-m Fading Channels. Sensors 2022, 22, 1974. [Google Scholar] [CrossRef]
- Lee, J.-H.; Song, J. Full-Duplex Relay for Millimeter Wave Vehicular Platoon Communications. Sensors 2020, 20, 6072. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Tu, L.T.; Tran, D.H.; Phan, V.D.; Voznak, M.; Chatzinotas, S.; Ding, Z. Outage Performance of Satellite Terrestrial Full-Duplex Relaying Networks with Co-Channel Interference. IEEE Wireless Commun. Lett. 2022, 17, 1478–1482. [Google Scholar] [CrossRef]
- Tu, L.-T.; Bradai, A.; Pousset, Y.; Aravanis, A.I. On the Spectral Efficiency of LoRa Networks: Performance Analysis, Trends and Optimal Points of Operation. IEEE Trans. Commun. 2022, 70, 2788–2804. [Google Scholar] [CrossRef]
- Shayovitz, S.; Krestiantsev, A.; Raphaeli, D. Low-Complexity Self-Interference Cancellation for Multiple Access Full Duplex Systems. Sensors 2022, 22, 1485. [Google Scholar] [CrossRef]
- Zhang, J.; He, F.; Li, W.; Li, Y.; Wang, Q.; Ge, S.; Xing, J.; Liu, H.; Li, Y.; Meng, J. Self-Interference Cancellation: A Comprehensive Review from Circuits and Fields Perspectives. Electronics 2022, 11, 172. [Google Scholar] [CrossRef]
- Jin, R.; Fan, X.; Sun, T. Centralized Multi-Hop Routing Based on Multi-Start Minimum Spanning Forest Algorithm in the Wireless Sensor Networks. Sensors 2021, 21, 1775. [Google Scholar] [CrossRef]
- Nguyen, Q.S.; Kong, H.Y. Exact outage analysis of the effect of co-channel interference on secured multi-hop relaying networks. Int. J. Electron. 2016, 103, 1822–1838. [Google Scholar] [CrossRef]
- Xu, Z.; Petrunin, I.; Li, T.; Tsourdos, A. Efficient Allocation for Downlink Multi-Channel NOMA Systems Considering Complex Constraints. Sensors 2021, 21, 1833. [Google Scholar] [CrossRef]
- Toan, H.V.; Hoang, T.M.; Duy, T.T.; Dung, L.T. Outage Probability and Ergodic Capacity of a Two-User NOMA Relaying System with an Energy Harvesting Full-Duplex Relay and Its Interference at the Near User. Sensors 2020, 20, 6472. [Google Scholar] [CrossRef]
- Tu, L.-T.; Renzo, M.D.; Coon, J.P. System-Level Analysis of SWIPT MIMO Cellular Networks. IEEE Commun. Lett. 2016, 20, 2011–2014. [Google Scholar]
- Duc, C.H.; Nguyen, S.Q.; Le, C.-B.; Khanh, N.T.V. Performance Evaluation of UAV-Based NOMA Networks with Hardware Impairment. Electronics 2022, 11, 94. [Google Scholar] [CrossRef]
- Tin, P.T.; Phan, V.-D.; Nguyen, T.N.; Tu, L.-T.; Minh, B.V.; Voznak, M.; Fazio, P. Outage Analysis of the Power Splitting Based Underlay Cooperative Cognitive Radio Networks. Sensors 2021, 21, 7653. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.C.; Tran, M.H.; Tran, P.T.; Nguyen, T.N. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU—Int. J. Electron. Commun. 2020, 116, 152957. [Google Scholar] [CrossRef]
- Ghous, M.; Hassan, A.K.; Abbas, Z.H.; Abbas, G.; Hussien, A.; Baker, T. Cooperative Power-Domain NOMA Systems: An Overview. Sensors 2022, 22, 9652. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Duy, T.T.; Tran, P.T.; Voznak, M.; Li, X.; Poor, H.V. Partial and Full Relay Selection Algorithms for AF Multi-Relay Full-Duplex Networks With Self-Energy Recycling in Non-Identically Distributed Fading Channels. IEEE Trans. Veh. Technol. 2022, 71, 6173–6188. [Google Scholar] [CrossRef]
- Tin, P.T.; Nguyen, T.N.; Tran, M.; Trang, T.T.; Sevcik, L. Exploiting Direct Link in Two-Way Half-Duplex Sensor Network over Block Rayleigh Fading Channel: Upper Bound Ergodic Capacity and Exact SER Analysis. Sensors 2020, 20, 1165. [Google Scholar] [CrossRef]
- Renzo, M.D.; Lam, T.T.; Zappone, A.; Debbah, M. A Tractable Closed-Form Expression of the Coverage Probability in Poisson Cellular Networks. IEEE Wirel. Commun. Lett. 2019, 8, 249–252. [Google Scholar] [CrossRef]
- Al Hajj, M.; Wang, S.; Thanh Tu, L.; Azzi, S.; Wiart, J. A Statistical Estimation of 5G Massive MIMO Networks’ Exposure Using Stochastic Geometry in mmWave Bands. Appl. Sci. 2020, 10, 8753. [Google Scholar] [CrossRef]
- Tin, P.T.; Nguyen, T.N.; Tran, D.-H.; Voznak, M.; Phan, V.-D.; Chatzinotas, S. Performance Enhancement for Full-Duplex Relaying with Time-Switching-Based SWIPT in Wireless Sensors Networks. Sensors 2021, 21, 3847. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Tran, D.H.; Phan, V.D.; Voznak, M.; Chatzinotas, S.; Ottersten, B.; Poor, H.V. Throughput Enhancement in FD- and SWIPT-Enabled IoT Networks Over Nonidentical Rayleigh Fading Channels. IEEE Int. Things J. 2022, 9, 10172–10186. [Google Scholar] [CrossRef]
- Alnawafa, E.; Marghescu, I. New Energy Efficient Multi-Hop Routing Techniques for Wireless Sensor Networks: Static and Dynamic Techniques. Sensors 2018, 18, 1863. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.-T.; Bao, V.N.Q.; Duy, T.T. Capacity analysis of multi-hop decode-and-forward over Rician fading channels. In Proceedings of the 2014 IEEE ComManTel, Da Nang, Vietnam, 27–29 April 2014; pp. 134–139. [Google Scholar]
- Tran, T.D.; Kong, H. Secrecy Performance Analysis of Multihop Transmission Protocols in Cluster Networks. Wirel. Pers. Commun. 2015, 82, 2505–2518. [Google Scholar]
- Viet Tuan, P.; Ngoc Son, P.; Trung Duy, T.; Nguyen, S.Q.; Ngo, V.Q.B.; Vinh Quang, D.; Koo, I. Optimizing a Secure Two-Way Network with Non-Linear SWIPT, Channel Uncertainty, and a Hidden Eavesdropper. Electronics 2020, 9, 1222. [Google Scholar] [CrossRef]
- Lam, T.T.; Renzo, M.D.; Coon, J.P. System-level analysis of receiver diversity in SWIPT-enabled cellular networks. J. Commun. Netw. 2016, 18, 926–937. [Google Scholar] [CrossRef]
- Tin, P.T.; Minh Nam, P.; Trung Duy, T.; Tran, P.T.; Voznak, M. Secrecy Performance of TAS/SC-Based Multi-Hop Harvest-to-Transmit Cognitive WSNs Under Joint Constraint of Interference and Hardware Imperfection. Sensors 2019, 19, 1160. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Okada, Y. Multi-Hop Wireless Network for Industrial IoT. SEI Technical Review. 8-11. 2018. Available online: https://sumitomoelectric.com/sites/default/files/2022-01/download_documents/86-02.pdf (accessed on 26 December 2022).
- Kim, T.-Y.; Youm, S.; Jung, J.-J.; Kim, E.-J. Multi-Hop WBAN Construction for Healthcare IoT Systems. In Proceedings of the 2015 International Conference on Platform Technology and Service, Jeju, Republic of Korea, 26–28 January 2015; pp. 27–28. [Google Scholar] [CrossRef]
- Levin, G.; Loyka, S. Amplify-and-forward versus decode-and-forward relaying: Which is better? Int. Zur. Semin. Commun. (IZS) 2012, 5348–5352. [Google Scholar] [CrossRef]
- Wang, R.; Wang, P. Fundamental Properties of Wireless Relays and Their Channel Estimation. In Encyclopedia of Wireless Networks; Shen, X., Lin, X., Zhang, K., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lam, T.T.; Di Renzo, M. On the Energy Efficiency of Heterogeneous Cellular Networks With Renewable Energy Sources—A Stochastic Geometry Framework. IEEE Trans. Wirel. Commun. 2020, 19, 6752–6770. [Google Scholar] [CrossRef]
- Aravanis, A.I.; Tu Lam, T.; Muñoz, O.; Pascual-Iserte, A.; Di Renzo, M. A tractable closed form approximation of the ergodic rate in Poisson cellular networks. J. Wirel. Commun. Netw. 2019, 2019, 187. [Google Scholar] [CrossRef]
- Schantz, H.G. Near field propagation law & a novel fundamental limit to antenna gain versus size. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; Volume 3A, pp. 237–240. [Google Scholar] [CrossRef]
- Fu, X.; Peng, R.; Liu, G.; Wang, J.; Yuan, W.; Kadoch, M. Channel Modeling for RIS-Assisted 6G Communications. Electronics 2022, 11, 2977. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Nguyen, V.S.; Nguyen, H.G.; Tu, L.T.; Van Chien, T.; Nguyen, T.H. On the Performance of Underlay Device-to-Device Communications. Sensors 2022, 22, 1456. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jung, W.-S.; Tu, L.T.; Chien, T.V.; Yoo, D.; Ro, S. Performance Analysis and Optimization of the Coverage Probability in Dual Hop LoRa Networks With Different Fading Channels. IEEE Access 2020, 8, 107087–107102. [Google Scholar] [CrossRef]
- Suraweera, H.A.; Smith, P.J.; Shafi, M. Capacity Limits and Performance Analysis of Cognitive Radio With Imperfect Channel Knowledge. IEEE Trans. Veh. Technol. 2010, 59, 1811–1822. [Google Scholar] [CrossRef]
- Tu, L.-T.; Nguyen, T.N.; Duy, T.T.; Tran, P.T.; Voznak, M.; Aravanis, A.I. Broadcasting in Cognitive Radio Networks: A Fountain Codes Approach. IEEE Trans. Veh. Technol. 2022, 71, 11289–11294. [Google Scholar] [CrossRef]
- Duy, T.T.; Duong, T.Q.; da Costa, D.B.; Bao, V.N.Q.; Elkashlan, M. Proactive Relay Selection With Joint Impact of Hardware Impairment and Co-Channel Interference. IEEE Trans. Commun. 2015, 63, 1594–1606. [Google Scholar] [CrossRef]
- Toka, M.; Guven, E.; Kurt, G.K.; Kucur, O. Performance Analyses of MRT/MRC in Dual-Hop NOMA Full-Duplex AF Relay Networks with Residual Hardware Impairments. arXiv 2021. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
, | Expectation and probability operators |
Channel coefficient between transmitter u and receiver v | |
Far-field path-loss between transmitter u and receiver v | |
Near-field path-loss between of the relay | |
, c | Path-loss constant, speed of light |
v, , | Wavelength, carrier frequency, path-loss exponent |
Transmission distance from node u to node v | |
Total transmit power of the whole networks | |
, | Transmit power of the relay and source node |
, | Coefficients of power allocation for and |
L, | Maximum size of the received antenna & number of relays |
, , | Rayleigh distance, transmit and receive antennae gain |
, | Targeted rate of destination |
Residue of the imperfect SIC at v receiver | |
Residue of the self-interference cancellation at relay | |
, , | Intended signals for sent by , and relays |
, | Received signals at the relay and destination |
, | AWGN noise at the relay and destination |
Noise variance at all the receiver | |
NF, Bw | Noise figure, transmission bandwidth |
, | Average transmit-power-to-noise-ratio and Heaviside function |
Variance of small-scale fading from transmitter u to receiver v | |
, | Exponential and logarithm functions |
, | Maximum and minimum functions |
Cumulative distribution function (CDF) of RV X | |
Complementary Cumulative distribution function (CCDF) of RV X | |
Moment generating function (MGF) of RV X | |
Probability density function (PDF) of RV X | |
OP | Outage probability of the destination under w scheme |
PT | Potential throughput of the whole networks under w scheme |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, L.-T.; Phan, V.-D.; Nguyen, T.N.; Tran, P.T.; Duy, T.T.; Nguyen, Q.-S.; Nguyen, N.-T.; Voznak, M. Performance Analysis of Multihop Full-Duplex NOMA Systems with Imperfect Interference Cancellation and Near-Field Path-Loss. Sensors 2023, 23, 524. https://doi.org/10.3390/s23010524
Tu L-T, Phan V-D, Nguyen TN, Tran PT, Duy TT, Nguyen Q-S, Nguyen N-T, Voznak M. Performance Analysis of Multihop Full-Duplex NOMA Systems with Imperfect Interference Cancellation and Near-Field Path-Loss. Sensors. 2023; 23(1):524. https://doi.org/10.3390/s23010524
Chicago/Turabian StyleTu, Lam-Thanh, Van-Duc Phan, Tan N. Nguyen, Phuong T. Tran, Tran Trung Duy, Quang-Sang Nguyen, Nhat-Tien Nguyen, and Miroslav Voznak. 2023. "Performance Analysis of Multihop Full-Duplex NOMA Systems with Imperfect Interference Cancellation and Near-Field Path-Loss" Sensors 23, no. 1: 524. https://doi.org/10.3390/s23010524