MAV Localization in Large-Scale Environments: A Decoupled Optimization/Filtering Approach
Abstract
:1. Introduction
- -
- In the case of state estimator initialization failure, we propose a unique instant bootstrapping technique based on continuous-time manifold optimization via pose graph optimization (PGO) and range factors, which depends on low-rate GPS signals.
- -
- A closed-form estimation method without nonlinear optimization during IMU/CAM fusion produces a reduced system latency with constant CPU computing complexity. The mathematical modeling of a linear ES-EKF with a precise and quick gyroscope integration strategy accounts for the simplicity of our proposed localization solution.
- -
- The EuRoC benchmark [12], for MAV localization assessment in indoor environments, and the Fast Flight dataset [11], for large-scale outdoor environments, are two real-world publicly available benchmarks on which our IMU/GPS-CAM fusion system has been thoroughly tested. With thorough ablation investigations into the role of each sensor modality in the overall accuracy of the state estimation process, the assessment is conducted using the most recent state-of-the-art visual-inertial odometry methodologies.
2. Related Work
2.1. Sensor Fusion
2.2. Fusion Strategies
2.3. Visual Odometry
2.4. Methodology Background
3. System Architecture
Algorithm 1 Bootstrapping: Pose Graph Optimization and Range Factors |
Input: RGB frames (c), camera matrix (), GPS readings (DT-GPS), IMU readings () Output: Metric-scaled trajectory () |
Algorithm 2 End-to-End State Estimation Scheme |
Input: IMU readings, initial optimized trajectory Output: FilterStates
|
3.1. State Estimator Initialization
3.2. Dynamic Model
3.3. Measurement Model
3.4. States Update
3.5. Reset Mode
4. Experiments
4.1. Setup
4.2. The EuRoC MAV Benchmark
4.3. The Fast Flight Dataset
4.4. Real-Time Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MAV | Micro Aerial Vehicle |
VO | Visual Odometry |
VIO | Visual Inertial Odometry |
SLAM | Simultaneous Localization Furthermore, Mapping |
CT/DT | Continuous Time/Discrete Time |
KLT | Kanade–Lucas Tracking |
PGO | Pose Graph Optimization |
ES-EKF | Error States Extended Kalman Filter |
S-MSCKF | Stereo Multi-State Constraint Kalman Filter |
S-UKF-LG | Stereo Unscented Kalman Filter on Lie Groups |
S-IEKF | Stereo (Invariant-)Extended Kalman Filter |
ATE | Absolute Trajectory Error |
RMS | Root Mean Square |
RMSE | Root Mean Square Error |
Appendix A. Observability Analysis
Appendix B. Qd Derivation Equations
References
- Soliman, A.; Bonardi, F.; Sidibé, D.; Bouchafa, S. IBISCape: A Simulated Benchmark for multi-modal SLAM Systems Evaluation in Large-scale Dynamic Environments. J. Intell. Robot. Syst. 2022, 106, 53. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, K. A Tightly Coupled Visual-Inertial GNSS State Estimator Based on Point-Line Feature. Sensors 2022, 22, 3391. [Google Scholar] [CrossRef] [PubMed]
- Gu, N.; Xing, F.; You, Z. GNSS Spoofing Detection Based on Coupled Visual/Inertial/GNSS Navigation System. Sensors 2021, 21, 6769. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wan, W.; Liu, H. Optimization-Based Online Initialization and Calibration of Monocular Visual-Inertial Odometry Considering Spatial-Temporal Constraints. Sensors 2021, 21, 2673. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Bai, X.; Wang, Y.; Fang, R. Robust Stereo Visual-Inertial Odometry Using Nonlinear Optimization. Sensors 2019, 19, 3747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Wang, W.; Li, H.; Zhang, S. EVtracker: An Event-Driven Spatiotemporal Method for Dynamic Object Tracking. Sensors 2022, 22, 6090. [Google Scholar] [CrossRef]
- Ren, G.; Yu, Y.; Liu, H.; Stathaki, T. Dynamic Knowledge Distillation with Noise Elimination for RGB-D Salient Object Detection. Sensors 2022, 22, 6188. [Google Scholar] [CrossRef]
- Alliez, P.; Bonardi, F.; Bouchafa, S.; Didier, J.Y.; Hadj-Abdelkader, H.; Muñoz, F.I.I.; Kachurka, V.; Rault, B.; Robin, M.; Roussel, D. Real-Time Multi-SLAM System for Agent Localization and 3D Mapping in Dynamic Scenarios. In Proceedings of the International Confererence on Intelligent Robots and Systems (IROS 2020), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Alonge, F.; Cusumano, P.; D’Ippolito, F.; Garraffa, G.; Livreri, P.; Sferlazza, A. Localization in Structured Environments with UWB Devices without Acceleration Measurements, and Velocity Estimation Using a Kalman-Bucy Filter. Sensors 2022, 22, 6308. [Google Scholar] [CrossRef]
- Cao, S.; Gao, H.; You, J. In-Flight Alignment of Integrated SINS/GPS/Polarization/Geomagnetic Navigation System Based on Federal UKF. Sensors 2022, 22, 5985. [Google Scholar] [CrossRef]
- Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight. IEEE Robot. Autom. Lett. 2018, 3, 965–972. [Google Scholar] [CrossRef]
- Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [Google Scholar] [CrossRef]
- Qin, T.; Pan, J.; Cao, S.; Shen, S. A general optimization-based framework for local odometry estimation with multiple sensors. arXiv 2019, arXiv:1901.03638. [Google Scholar]
- Yu, Y.; Gao, W.; Liu, C.; Shen, S.; Liu, M. A GPS-aided Omnidirectional Visual-Inertial State Estimator in Ubiquitous Environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 7750–7755. [Google Scholar] [CrossRef]
- Mascaro, R.; Teixeira, L.; Hinzmann, T.; Siegwart, R.; Chli, M. GOMSF: Graph-Optimization Based Multi-Sensor Fusion for robust UAV Pose estimation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1421–1428. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, G.; Scaramuzza, D. Tightly-coupled Fusion of Global Positional Measurements in Optimization-based Visual-Inertial Odometry. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 5089–5095. [Google Scholar] [CrossRef]
- Dai, J.; Liu, S.; Hao, X.; Ren, Z.; Yang, X. UAV Localization Algorithm Based on Factor Graph Optimization in Complex Scenes. Sensors 2022, 22, 5862. [Google Scholar] [CrossRef]
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar] [CrossRef]
- Brossard, M.; Bonnabel, S.; Barrau, A. Unscented Kalman Filter on Lie Groups for Visual Inertial Odometry. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 649–655. [Google Scholar] [CrossRef] [Green Version]
- Bloesch, M.; Burri, M.; Omari, S.; Hutter, M.; Siegwart, R. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback. Int. J. Robot. Res. 2017, 36, 1053–1072. [Google Scholar] [CrossRef] [Green Version]
- Brunello, A.; Urgolo, A.; Pittino, F.; Montvay, A.; Montanari, A. Virtual Sensing and Sensors Selection for Efficient Temperature Monitoring in Indoor Environments. Sensors 2021, 21, 2728. [Google Scholar] [CrossRef]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual—Inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. OrbSLAM3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Usenko, V.; Demmel, N.; Schubert, D.; Stückler, J.; Cremers, D. Visual-inertial mapping with non-linear factor recovery. IEEE Robot. Autom. Lett. 2019, 5, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Schimmack, M.; Haus, B.; Mercorelli, P. An Extended Kalman Filter as an Observer in a Control Structure for Health Monitoring of a Metal–Polymer Hybrid Soft Actuator. IEEE/ASME Trans. Mechatron. 2018, 23, 1477–1487. [Google Scholar] [CrossRef]
- Mercorelli, P. A switching Kalman Filter for sensorless control of a hybrid hydraulic piezo actuator using MPC for camless internal combustion engines. In Proceedings of the 2012 IEEE International Conference on Control Applications, Dubrovnik, Croatia, 3–5 October 2012; pp. 980–985. [Google Scholar] [CrossRef]
- Huang, G.; Kaess, M.; Leonard, J.J. Towards consistent visual-inertial navigation. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 4926–4933. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Meyr, H.; Dörpinghaus, M.; Fettweis, G. Observability Analysis of Flight State Estimation for UAVs and Experimental Validation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4659–4665. [Google Scholar] [CrossRef]
- Cioffi, G.; Cieslewski, T.; Scaramuzza, D. Continuous-Time Vs. Discrete-Time Vision-Based SLAM: A Comparative Study. IEEE Robot. Autom. Lett. 2022, 7, 2399–2406. [Google Scholar] [CrossRef]
- Nurhakim, A.; Ismail, N.; Saputra, H.M.; Uyun, S. Modified Fourth-Order Runge-Kutta Method Based on Trapezoid Approach. In Proceedings of the 2018 4th International Conference on Wireless and Telematics (ICWT), Nusa Dua, Bali, Indonesia, 12–13 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Lv, M.; Wei, H.; Fu, X.; Wang, W.; Zhou, D. A Loosely Coupled Extended Kalman Filter Algorithm for Agricultural Scene-Based Multi-Sensor Fusion. Front. Plant Sci. 2022, 13, 9260. [Google Scholar] [CrossRef] [PubMed]
- Sola, J. Quaternion kinematics for the error-state Kalman filter. arXiv 2017, arXiv:1711.02508. [Google Scholar]
- Sommer, C.; Usenko, V.; Schubert, D.; Demmel, N.; Cremers, D. Efficient Derivative Computation for Cumulative B-Splines on Lie Groups. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; pp. 11145–11153. [Google Scholar] [CrossRef]
- Trawny, N.; Roumeliotis, S.I. Indirect Kalman filter for 3D attitude estimation. Eng. Tech. Rep. 2005, 2, 2005. [Google Scholar]
- Moulon, P.; Monasse, P.; Marlet, R. Adaptive Structure from Motion with a Contrario Model Estimation. In Proceedings of the Computer Vision—ACCV 2012, Daejeon, Republic of Korea, 5–9 November 2012; Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 257–270. [Google Scholar]
- Nister, D. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 756–770. [Google Scholar] [CrossRef]
- Tomasi, C.; Kanade, T. Detection and tracking of point. Int. J. Comput. Vis. 1991, 9, 137–154. [Google Scholar] [CrossRef]
- Wang, Y.; Chirikjian, G.S. Nonparametric second-order theory of error propagation on motion groups. Int. J. Robot. Res. 2008, 27, 1258–1273. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Mierle, K. Ceres Solver. Available online: https://github.com/ceres-solver/ceres-solver (accessed on 10 October 2022).
- Geneva, P.; Eckenhoff, K.; Lee, W.; Yang, Y.; Huang, G. OpenVINS: A Research Platform for Visual-Inertial Estimation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4666–4672. [Google Scholar] [CrossRef]
- Zuo, X.; Merrill, N.; Li, W.; Liu, Y.; Pollefeys, M.; Huang, G.P. CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 14382–14388. [Google Scholar]
- Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An open-source library for real-time metric-semantic localization and mapping. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1689–1696. [Google Scholar]
- Li, M.; Mourikis, A.I. High-precision, consistent EKF-based visual-inertial odometry. Int. J. Robot. Res. 2013, 32, 690–711. [Google Scholar] [CrossRef]
Parameter | EuRoC Benchmark [12] | Fast Flight Dataset [11] | |||||||
---|---|---|---|---|---|---|---|---|---|
Stats | Total processed sequences | 6 (Vicon room) | 4 (airport runway) | ||||||
Total sequences duration | 11.6111 min | 8.8867 min | |||||||
Total sequences length | 411.5425 m | 2539.0599 1 m | |||||||
Maximum speed | 2.3 (m/s) | 17.5 (m/s) | |||||||
Camera | Total processed frames | 13,736 | 21,312 | ||||||
Frame resolution | 752 × 480 pixels | 960 × 800 pixels | |||||||
Intrinsics | 458.65 | 457.30 | 367.22 | 248.38 | 606.58 | 606.73 | 474.93 | 402.28 | |
Distortion | −0.2834 | 0.0739 | 0.0001 | 0.000018 | −0.0147 | −0.0058 | 0.0072 | −0.0046 | |
Camera-IMU (x,y,z,1) (m) | −0.0216 | −0.0647 | 0.0098 | 1.0000 | 0.1058 | −0.0177 | −0.0089 | 1.0000 | |
Camera-IMU (x,y,z,w) [-] | −0.0077 | 0.0105 | 0.7018 | 0.7123 | −1.0000 | 0.0042 | −0.0039 | 0.0015 | |
Frame rate | 20 (Hz) | 40 (Hz) | |||||||
IMU | Gyroscope noise density () | [rad/s/] | [rad/s/] | ||||||
Gyroscope random walk () | [rad/s/] | [rad/s/] | |||||||
Accelerometer noise density () | [m/s/] | [m/s/] | |||||||
Accelerometer random walk () | [m/s/] | [m/s/] | |||||||
Data rate () | 200 (Hz) | 200 (Hz) | |||||||
GPS | Type/operation | Indoors/Vicon system | Outdoors/satellite Triangulation | ||||||
Readings | X (m), Y (m), Z (m) | Long. (deg), Lat. (deg), Alt. (m) | |||||||
Data rate | 1 (Hz) (down-sampled) | 5 (Hz) |
Parameter Initialization | EuRoC Benchmark [12] | Fast Flight Dataset [11] |
---|---|---|
28-element error state vector () | ||
31-element state vector 1 () | ||
States propagation covariance (P) | ||
CT process noise covariance 2 () | ||
Measurement noise covariance () |
Method | EuRoC Benchmark [12] (RMS ATE [m]) | Avg. | ||||||
---|---|---|---|---|---|---|---|---|
V1-01 | V1-02 | V1-03 | V2-01 | V2-02 | V2-03 | |||
Mono-VI | OKVIS [23] | 0.090 | 0.200 | 0.240 | 0.130 | 0.160 | 0.290 | 0.185 |
ROVIO [20] | 0.100 | 0.100 | 0.140 | 0.120 | 0.140 | 0.140 | 0.123 | |
VINS-Mono [22] | 0.047 | 0.066 | 0.180 | 0.056 | 0.090 | 0.244 | 0.114 | |
OpenVINS [41] | 0.056 | 0.072 | 0.069 | 0.098 | 0.061 | 0.286 | 0.107 | |
CodeVIO 1 [42] | 0.054 | 0.071 | 0.068 | 0.097 | 0.061 | 0.275 | 0.104 | |
Cioffi et al. 2 [16] | 0.034 | 0.035 | 0.042 | 0.026 | 0.033 | 0.057 | 0.038 | |
Stereo-VI | VINS-Fusion [13] | 0.076 | 0.069 | 0.114 | 0.066 | 0.091 | 0.096 | 0.085 |
BASALT [25] | 0.040 | 0.020 | 0.030 | 0.030 | 0.020 | 0.050 | 0.032 | |
Kimera [43] | 0.050 | 0.110 | 0.120 | 0.070 | 0.100 | 0.190 | 0.107 | |
ORB-SLAM3 [24] | 0.038 | 0.014 | 0.024 | 0.032 | 0.014 | 0.024 | 0.024 | |
Mono-(V/I/G) 3 | CT (V+I+G) [30] | 0.024 | 0.014 | 0.011 | 0.012 | 0.010 | 0.010 | 0.014 |
CT (V+G) [30] | 0.011 | 0.013 | 0.012 | 0.009 | 0.008 | 0.012 | 0.011 | |
CT (I+G) [30] | 0.062 | 0.102 | 0.117 | 0.112 | 0.164 | 0.363 | 0.153 | |
DT (V+I+G) [30] | 0.016 | 0.024 | 0.018 | 0.009 | 0.018 | 0.033 | 0.020 | |
DT (V+G) [30] | 0.010 | 0.025 | 0.024 | 0.010 | 0.012 | 0.029 | 0.018 | |
DT (I+G) [30] | 0.139 | 0.137 | 0.138 | 0.138 | 0.138 | 0.139 | 0.138 | |
Ours (PGO) | 0.008 | 0.017 4 | 0.023 4 | 0.008 | 0.022 | 0.025 4 | 0.017 | |
Ours (ES-EKF) | 0.009 | 0.012 | 0.011 | 0.010 | 0.011 | 0.010 | 0.011 |
Method | Fast Flight [11] (RMSE (m)) | Avg. | |||
---|---|---|---|---|---|
gps5 | gps10 | gps15 | gps175 | ||
OKVIS [23] | 3.224 | 4.987 | 3.985 | 4.535 | 4.183 |
VINS-Mono [22] | 5.542 | 8.753 | 2.875 | 3.452 | 5.156 |
Ours (PGO) | 0.417 | 0.759 | 0.180 | 0.927 | 0.571 |
S-MSCKF [11] | 4.985 | 2.751 | 4.752 | 7.852 | 5.085 |
S-UKF-LG [19] | 4.875 | 2.589 | 5.128 | 7.865 | 5.114 |
S-IEKF [19] | 4.986 | 2.544 | 5.124 | 8.152 | 5.201 |
Ours (ES-EKF) | 4.751 | 7.924 | 7.221 | 9.488 | 7.346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, A.; Hadj-Abdelkader, H.; Bonardi, F.; Bouchafa, S.; Sidibé, D. MAV Localization in Large-Scale Environments: A Decoupled Optimization/Filtering Approach. Sensors 2023, 23, 516. https://doi.org/10.3390/s23010516
Soliman A, Hadj-Abdelkader H, Bonardi F, Bouchafa S, Sidibé D. MAV Localization in Large-Scale Environments: A Decoupled Optimization/Filtering Approach. Sensors. 2023; 23(1):516. https://doi.org/10.3390/s23010516
Chicago/Turabian StyleSoliman, Abanob, Hicham Hadj-Abdelkader, Fabien Bonardi, Samia Bouchafa, and Désiré Sidibé. 2023. "MAV Localization in Large-Scale Environments: A Decoupled Optimization/Filtering Approach" Sensors 23, no. 1: 516. https://doi.org/10.3390/s23010516
APA StyleSoliman, A., Hadj-Abdelkader, H., Bonardi, F., Bouchafa, S., & Sidibé, D. (2023). MAV Localization in Large-Scale Environments: A Decoupled Optimization/Filtering Approach. Sensors, 23(1), 516. https://doi.org/10.3390/s23010516