Polarization-Sensitive Patterning of Azopolymer Thin Films Using Multiple Structured Laser Beams
Abstract
1. Introduction
2. Methods
3. Optical Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kudryashov, S.I.; Danilov, P.A.; Porfirev, A.P.; Saraeva, I.N.; Nguyen, T.H.T.; Rudenko, A.A.; Khmelnitskii, R.A.; Zayarny, D.A.; Ionin, A.A.; Kuchmizhak, A.A.; et al. High-Throughput Micropatterning of Plasmonic Surfaces by Multiplexed Femtosecond Laser Pulses for Advanced IR-Sensing Applications. Appl. Surf. Sci. 2019, 484, 948–956. [Google Scholar] [CrossRef]
- Pavlov, D.; Porfirev, A.; Khonina, S.; Pan, L.; Kudryashov, S.I.; Kuchmizhak, A.A. Coaxial Hole Array Fabricated by Ultrafast Femtosecond-Laser Processing with Spatially Multiplexed Vortex Beams for Surface Enhanced Infrared Absorption. Appl. Surf. Sci. 2021, 541, 148602. [Google Scholar] [CrossRef]
- Ruffino, F.; Grimaldi, M.G. Nanostructuration of Thin Metal Films by Pulsed Laser Irradiations: A Review. Nanomaterials 2019, 9, 1133. [Google Scholar] [CrossRef] [PubMed]
- Mulko, L.; Soldera, M.; Lasagni, A.F. Structuring and Functionalization of Non-metallic Materials Using Direct Laser Interference Patterning: A Review. Nanophotonics 2022, 11, 203. [Google Scholar] [CrossRef]
- Klein-Wiele, J.H.; Fricke-Begemann, T.; Simon, P.; Ihlemann, J. Complex Diffractive Surface Patterns on Metals by UV-ps Laser Ablation. Opt. Express 2019, 27, 28902–28914. [Google Scholar] [CrossRef] [PubMed]
- Pushkarev, D.V.; Lar’kin, A.S.; Mitina, E.V.; Zhidovtsev, N.A.; Uryupina, D.S.; Volkov, R.V.; Karpeev, S.V.; Khonina, S.N.; Karabutov, A.A.; Geints, Y.E.; et al. Robust Multifilament Arrays in Air by Dammann Grating. Opt. Express 2021, 29, 34189–34204. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; Li, X.; Jiang, Y.; Wang, Y.; Dai, P.; Liu, Q.; Shu, Z.; Duan, H. Integrated Metasurfaces with Microprints and Helicity-Multiplexed Holograms for Real-Time Optical Encryption. Adv. Opt. Mater. 2020, 8, 1902020. [Google Scholar] [CrossRef]
- Guo, L.; Feng, Z.; Fu, Y.; Min, C. Generation of Vector Beams Array with a Single Spatial Light Modulator. Opt. Commun. 2021, 490, 126915. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Ustinov, A.V.; Khonina, S.N. Polarization Conversion when Focusing Cylindrically Polarized Vortex Beams. Sci. Rep. 2016, 6, 6. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, L.; Liu, Y.; Tan, X. A Review of Polarization-Sensitive Materials for Polarization Holography. Materials 2020, 13, 5562. [Google Scholar] [CrossRef]
- Priimagi, A.; Shevchenko, A. Azopolymer-Based Micro-and Nanopatterning for Photonic Applications. J. Polym. Sci. B Polym. Phys. 2014, 52, 163–182. [Google Scholar] [CrossRef]
- Sekkat, Z.; Wood, J.; Aust, E.F.; Knoll, W.; Volksen, W.; Miller, R.D. Light-Induced Orientation in a High Glass Transition Temperature Polyimide with Polar Azo Dyes in the Side Chain. J. Opt. Soc. Am. B 1996, 13, 1713–1724. [Google Scholar] [CrossRef]
- Sekkat, Z.; Yasumatsu, D.; Kawata, S. Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers. J. Phys. Chem. B 2002, 106, 12407–12417. [Google Scholar] [CrossRef]
- Meshalkin, A.; Losmanschii, C.; Prisacar, A.; Achimova, E.; Abashkin, V.; Pogrebnoi, S.; Macaev, F. Carbazole-Based Azopolymers as Media for Polarization Holographic Recording. Adv. Phys. Res. 2019, 1, 86–98. [Google Scholar]
- Kazanskiy, N.L.; Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Diffractive Optical Elements for Multiplexing Structured Laser Beams. Quantum Elec. 2020, 50, 629. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Sector Sandwich Structure: An Easy-to-Manufacture Way Towards Complex Vector Beam Generation. Opt. Express 2020, 28, 27628–27643. [Google Scholar] [CrossRef]
- Ram, B.B.; Senthilkumaran, P.; Sharma, A. Polarization-Based Spatial Filtering for Directional and Nondirectional Edge Enhancement Using an S-Waveplate. Appl. Opt. 2017, 56, 3171–3178. [Google Scholar]
- Marrucci, L.; Manzo, C.; Paparo, D. Pancharatnam-Berry Phase Optical Elements for Wave Front Shaping in the Visible Domain: Switchable Helical Mode Generation. Appl. Phys. Lett. 2006, 88, 221102. [Google Scholar] [CrossRef]
- Beresna, M.; Gecevicius, M.; Kazansky, P.; Gertus, T. Radially Polarized Converter Created by Femtosecond Laser Nanostructuring of Glass. Appl. Phys. Lett. 2006, 98, 201101. [Google Scholar] [CrossRef]
- Machavariani, G.; Lumer, Y.; Moshe, I.; Meir, A.; Jackel, S. Spatially-Variable Retardation Plate for Efficient Generation of Radially-and Azimuthally-Polarized Beams. Opt. Commun. 2008, 281, 732–738. [Google Scholar] [CrossRef]
- Merck. Russian Federation. 2021. Available online: http://www.sigmaaldrich.com (accessed on 20 November 2022).
- Porfirev, A.; Khonina, S.; Ivliev, N.; Meshalkin, A.; Achimova, E.; Forbes, A. Writing and Reading with the Longitudinal Component of Light Using Carbazole-Containing Azopolymer Thin Films. Sci. Rep. 2022, 12, 3477. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Qian, H.; Chen, C.F.; Zhao, J.; Li, G.; Wu, Q.; Luo, H.; Wen, S.; Liu, Z. Optical Edge Detection Based on High-Efficiency Dielectric Metasurface. Proc. Natl. Acad. Sci. USA 2019, 116, 11137–11140. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, R.; Luo, H. Computing Metasurfaces for All-Optical Image Processing: A Brief Review. Nanophotonics 2022, 11, 1083–1108. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Optical Computing: Status and Perspectives. Nanomaterials 2022, 12, 2171. [Google Scholar] [CrossRef] [PubMed]
- Slussarenko, S.; Murauski, A.; Du, T.; Chigrinov, V.; Marrucci, L.; Santamato, E. Tunable Liquid Crystal q-Plates with Arbitrary Topological Charge. Opt. Express 2011, 19, 4085–4090. [Google Scholar] [CrossRef]
- Davis, J.A.; Hashimoto, N.; Kurihara, M.; Hurtado, E.; Pierce, M.; Sánchez-López, M.M.; Badham, K.; Moreno, I. Analysis of a Segmented q-Plate Tunable Retarder for the Generation of First-Order Vector Beams. Appl. Opt. 2015, 54, 9583–9590. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V. Binary Multi-Order Diffraction Optical Elements with Variable Fill Factor for the Formation and Detection of Optical Vortices of Arbitrary Order. Appl. Opt. 2019, 58, 8227–8236. [Google Scholar] [CrossRef]
- Kazanskiy, N.; Skidanov, R. Binary beam splitter. Appl. Opt. 2012, 51, 2672–2677. [Google Scholar] [CrossRef]
- Man, Z.; Min, C.; Zhang, Y.; Shen, Z.; Yuan, X.-C. Arbitrary Vector Beams with Selective Polarization States Patterned by Tailored Polarizing Films. Laser Phys. 2013, 23, 105001. [Google Scholar] [CrossRef]
- Stalder, M.; Schadt, M. Linearly Polarized Light with Axial Symmetry Generated by Liquid-Crystal Polarization Converters. Opt. Lett. 1996, 21, 1948–1950. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic Diffraction in Optical Systems, II. Structure of the Image Field in an Aplanatic System. Proc. R. Soc. A Math. Phys. Eng. Sci. 1959, 253, 358. [Google Scholar]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-Induced Spiral Mass Transport in Azo-Polymer Films under Vortex-Beam Illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef] [PubMed]
- Moerland, R.J.; Koskela, J.E.; Kravchenko, A.; Simberg, M.; Van Der Vegte, S.; Kaivola, M.; Priimagi, A.; Ras, R.H. Large-Area Arrays of Three-Dimensional Plasmonic Subwavelength-Sized Structures from Azopolymer Surface-Relief Gratings. Mater. Horiz. 2014, 1, 74–80. [Google Scholar] [CrossRef]
- Sekkat, Z.; Kawata, S. Laser Nanofabrication in Photoresists and Azopolymers. Laser Photonics Rev. 2014, 8, 1–26. [Google Scholar] [CrossRef]
- Nakata, Y.; Yoshida, M.; Miyanaga, N. Parallel Fabrication of Spiral Surface Structures by Interference Pattern of Circularly Polarized Beams. Sci. Rep. 2018, 8, 13448. [Google Scholar] [CrossRef] [PubMed]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 9000615. [Google Scholar] [CrossRef]
- Nivas, J.J.J.; Allahyari, E.; Cardano, F.; Rubano, A.; Fittipaldi, R.; Vecchione, A.; Paparo, D.; Marrucci, L.; Bruzzese, R.; Amoruso, S. Surface Structures with Unconventional Patterns and Shapes Generated by Femtosecond Structured Light Fields. Sci. Rep. 2018, 8, 13613. [Google Scholar] [CrossRef]
- Nivas, J.J.J.; Allahyari, E.; Amoruso, S. Direct Femtosecond Laser Surface Structuring with Complex Light Beams Generated by q-Plates. Adv. Opt. Technol. 2020, 9, 53. [Google Scholar] [CrossRef]
- Wu, Z.-L.; Qi, Y.-N.; Yin, X.-J.; Yang, X.; Chen, C.-M.; Yu, J.-Y.; Yu, J.-C.; Lin, Y.-M.; Hui, F.; Liu, P.-L.; et al. Polymer-Based Device Fabrication and Applications Using Direct Laser Writing Technology. Polymers 2019, 11, 553. [Google Scholar] [CrossRef]
- Florian, C.; Piazza, S.; Diaspro, A.; Serra, P.; Duocastella, M. Direct Laser Printing of Tailored Polymeric Microlenses. ACS Appl. Mater. Interfaces 2016, 8, 17028–17032. [Google Scholar] [CrossRef]
- Pawlik, G.; Wysoczanski, T.; Mitus, A.C. Complex Dynamics of Photoinduced Mass Transport and Surface Relief Gratings Formation. Nanomaterials 2019, 9, 352. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.P.; Khonina, S.N.; Meshalkin, A.; Ivliev, N.A.; Achimova, E.; Abashkin, V.; Prisacar, A.; Podlipnov, V.V. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses. Opt. Lett. 2021, 46, 3037–3040. [Google Scholar] [CrossRef] [PubMed]
- Reda, F.; Salvatore, M.; Borbone, F.; Maddalena, P.; Oscurato, S.L. Accurate Morphology-Related Diffraction Behavior of Light-Induced Surface Relief Gratings on Azopolymers. ACS Mater. Lett. 2022, 4, 953–959. [Google Scholar] [CrossRef]
- Kuchmizhak, A.; Pustovalov, E.; Syubaev, S.; Vitrik, O.; Kulchin, Y.; Porfirev, A.; Khonina, S.; Kudryashov, S.I.; Danilov, P.; Ionin, A. On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications. ACS Appl. Mater. Interfaces 2016, 8, 24946–24955. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Yan, K.; Zhu, H.; Wang, B.; Zou, B. Laser Micro/Nano-Structuring Pushes Forward Smart Sensing: Opportunities and Challenges. Adv. Funct. Mater. 2022, 2211272. [Google Scholar] [CrossRef]
- Lapidas, V.; Zhizhchenko, A.; Pustovalov, E.; Storozhenko, D.; Kuchmizhak, A. Direct laser printing of high-resolution physically unclonable function anti-counterfeit labels. Appl. Phys. Lett. 2022, 120, 261104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porfirev, A.P.; Khonina, S.N.; Ivliev, N.A.; Fomchenkov, S.A.; Porfirev, D.P.; Karpeev, S.V. Polarization-Sensitive Patterning of Azopolymer Thin Films Using Multiple Structured Laser Beams. Sensors 2023, 23, 112. https://doi.org/10.3390/s23010112
Porfirev AP, Khonina SN, Ivliev NA, Fomchenkov SA, Porfirev DP, Karpeev SV. Polarization-Sensitive Patterning of Azopolymer Thin Films Using Multiple Structured Laser Beams. Sensors. 2023; 23(1):112. https://doi.org/10.3390/s23010112
Chicago/Turabian StylePorfirev, Alexey P., Svetlana N. Khonina, Nikolay A. Ivliev, Sergey A. Fomchenkov, Denis P. Porfirev, and Sergey V. Karpeev. 2023. "Polarization-Sensitive Patterning of Azopolymer Thin Films Using Multiple Structured Laser Beams" Sensors 23, no. 1: 112. https://doi.org/10.3390/s23010112
APA StylePorfirev, A. P., Khonina, S. N., Ivliev, N. A., Fomchenkov, S. A., Porfirev, D. P., & Karpeev, S. V. (2023). Polarization-Sensitive Patterning of Azopolymer Thin Films Using Multiple Structured Laser Beams. Sensors, 23(1), 112. https://doi.org/10.3390/s23010112