Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Managing Tool and the Calculation of Displacements
3. Results
4. Discussion and Conclusive Remarks
- -
- Flexibility: the system can be extended over a large area; in fact, the distance of some tens of meters allows it to be used for landslides of different sizes and, therefore, volumes without requiring specific effort for the system’s adaptability;
- -
- Installable in different conditions of the slope: the system does not require special installation conditions, as is necessary for systems such as GBInSAR, TLS, or RTS. These technologies require an installation site at a stable position; however, at the same time, they do not require excessive distances (<1 km for TLS and RTS), directions of line-of-sight as parallel as possible to the direction of movement (GBInSAR), or slopes to be monitored with little vegetation (GBInSAR). On the contrary, the cost-effective network requires only one node external to the landslide and, concerning vegetation, that each node has sufficient sky visibility to be capable of retrieving the satellite signals (in the Cazzaso test site, 15° above the horizon and a tree-free region around 10 m from the station);
- -
- Cost-effective: the cost of each single-frequency receiver is reduced by about a tenth compared to that of a double frequency monitoring receiver;
- -
- Scalability: the sensor network can be made more or less “dense” according to the characteristics of the landslide;
- -
- 3D monitoring: like all GNSS sensors, even single-frequency ones allow the reconstruction of 3D displacements.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide early warning system. Eng. Geol. 2012, 147–148, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Dis. 2017, 4, 9. [Google Scholar] [CrossRef]
- Frodella, W.; Ciampalini, A.; Bardi, F.; Salvatici, T.; Di Traglia, F.; Basile, G.; Casagli, N. A method for assessing and managing landslide residual hazard in urban areas. Landslides 2018, 15, 183–197. [Google Scholar] [CrossRef]
- Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 2017, 14, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, L.; Nocentini, M.; Frodella, W.; Nolesini, T.; Bardi, F.; Intrieri, E.; Carla, T.; Solari, L.; Dotta, G.; Ferrigno, F.; et al. The Calatabiano landslide (southern Italy): Preliminary GB-InSAR monitoring data and remote 3D mapping. Landslides 2017, 14, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth Sci. Rev. 2019, 193, 333–349. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Gracchi, T.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Frodella, W.; Bertolini, G.; Carnevale, E.; Favalli, M.; et al. Application of an ultra-wide band sensor-free wireless network for ground monitoring. Eng. Geol. 2018, 238, 1–14. [Google Scholar] [CrossRef]
- Mucchi, L.; Jayousi, S.; Martinelli, A.; Caputo, S.; Intrieri, E.; Gigli, G.; Gracchi, T.; Mugnai, F.; Favalli, M.; Fornaciai, A.; et al. A flexible wireless sensor network based on ultra-wide band technology for ground instability monitoring. Sensors 2018, 18, 2948. [Google Scholar] [CrossRef]
- Wang, G. GPS landslide monitoring: Single base vs. network solutions—a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J. Geod. Sci. 2011, 1, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Šegina, E.; Peternel, T.; Urbančič, T.; Realini, E.; Zupan, M.; Jež, J.; Caldera, S.L.; Gatti, A.; Tagliaferro, G.; Consoli, A.; et al. Monitoring surface displacement of a deep-seated landslide by a low-cost and near real-time GNSS system. Remote Sens. 2020, 12, 3375. [Google Scholar] [CrossRef]
- Rodriguez, J.; Deane, E.; Hendry, M.T.; Macciotta, R.; Evans, T.; Gräpel, C.; Skirrow, R. Practical evaluation of single-frequency dGNSS for monitoring slow-moving landslides. Landslides 2021, 18, 3671–3684. [Google Scholar]
- Tunini, L.; Zuliani, D.; Magrin, A. Applicability of Cost-Effective GNSS Sensors for Crustal Deformation Studies. Sensors 2022, 22, 350. [Google Scholar] [CrossRef]
- CNR-GNDCI. Consiglio Nazionale delle Ricerche, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche. Progetto AVI (Aree Vulnerate Italiane)—Archivio Frane. Scheda di Censimento n. 1300218. 1992. Available online: http://wwwdb.gndci.cnr.it/php2/avi/frane_tutto.php?numero_frana=1300218&lingua=it (accessed on 28 April 2022).
- Coccolo, A. Realizzazione di una rete di Monitoraggio con Metodologia GPS Nell’ambito Dell’intervento Relativo al Monitoraggio del Movimento Franoso a Monte di Cazzaso. Rete di Monitoraggio GPS14, Monografie dei Caposaldi, MON; Technical Report Realised by CP Ingegneria Consulting Engineers for the Tolmezzo Municipality; Municipality: Tolmezzo, Italy, 2010. [Google Scholar]
- Coccolo, A. Realizzazione di una Rete di Monitoraggio con Metodologia GPS Nell’ambito Dell’intervento Relativo al Monitoraggio del Movimento Franoso a Monte di Cazzaso. Rete di Monitoraggio GPS14, Relazione Illustrativa, REL; Technical Report Realised by CP Ingegneria Consulting Engineers for the Tolmezzo Municipality; Municipality: Tolmezzo, Italy, 2012. [Google Scholar]
- Coccolo, A. Realizzazione di una Rete di Monitoraggio con Metodologia GPS Nell’ambito Dell’intervento Relativo al Monitoraggio del Movimento Franoso a Monte di Cazzaso. Rete di Monitoraggio GPS14, Campagna di Misure n°16, 9–10 Dicembre 2015, R16; Technical Report Realised by CP Ingegneria Consulting Engineers for the Tolmezzo Municipality; Municipality: Tolmezzo, Italy, 2015. [Google Scholar]
- Ramella, R.; Roberto, R. Prosecuzione di un Incarico per il Monitoraggio del Dissesto Franoso Interessante L’abitato di Cazzaso in Comune di Tolmezzo (UD) Convenzione Rep. 7872 dd. 30 Dicembre 2002, REL/11-2006/RIMA-01; Technical Report Realised by OGS; OGS: New York, NY, USA, 2006. [Google Scholar]
- Ramella, R.; Roberto, R. Prosecuzione di un Incarico per il Monitoraggio del Dissesto Franoso Interessante L’abitato di Cazzaso in Comune di Tolmezzo (UD) Convenzione Rep. 7872 dd. 30 Dicembre 2002, Secondo Rapporto Annuale, REL/75-2004/RIMA-02; Technical Report Realised by OGS; OGS: New York, NY, USA, 2004. [Google Scholar]
- Pondrelli, M.; Corradini, C.; Spalletta, C.; Simonetto, M.C.P.L.; Corriga, M.G.; Venturini, C.; Schönlaub, H.P. Geological map and stratigraphic evolution of the central sector of the Carnic Alps (Austria-Italy). Ital. J. Geosci. 2020, 139, 469–484. [Google Scholar] [CrossRef]
- Colucci, R.R.; Monegato, G.; Žebre, M. Glacial and proglacial deposits of the Resia Valley (NE Italy): New insights on the onset and decay of the last Alpine Glacial Maximum in the Julian Alps. Alp. Mediterr. Quat. 2014, 27, 85–104. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- WP/WLI—International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory. A suggested method for describing the rate of movement of a landslide. Bull. Inter. Assoc. Eng. Geol. 1995, 52, 75–78. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Schuster, R.L., Ed.; National Academy of Sciences Special Report; Transportation Research Board: Washington, DC, USA, 1996; Volume 247, pp. 36–75. [Google Scholar]
- Marchi, L.; Cazorzi, F.; Arattano, M.; Cucchiaro, S.; Cavalli, M.; Crema, S. Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019. Nat. Hazards Earth Syst. Sci. 2021, 21, 87–97. [Google Scholar] [CrossRef]
- Carulli, G.B. Note Illustrative della Carta Geologica del Friuli Venezia Giulia, Scala 1:150000; Regione Autonoma Friuli Venezia Giulia, Direzione Centrale Ambiente e Lavori Pubblici, Servizio Geologico Regionale; SELCA: Milano, Italy, 2006; pp. 1–44. [Google Scholar]
- Zuliani, D.; Bertoni, M.; Ponton, C.C.; Fabris, P.; Severin, M.; Ferin, G.; Rossi, G. GNSS single-frequency devices at OGS: LZER0 a cost-effective prototype. In Proceedings of the GNGTS Meeting, Trieste, Italy, 14–16 November 2017. [Google Scholar]
- Chersich, M.; Curone, D.; Devoti, R.; Galvani, A.; Osmo, M.; Sepe, V. Benchmark Test of a GNSS Low-Cost, Single-Frequency, Geodetic Monitoring System; Società Geologica Italiana: Naples, Italy, 2016. [Google Scholar] [CrossRef]
- Heunecke, O.; Glabsch, J.; Schuhbäck, S. Landslide Monitoring Using Low Cost GNSS Equipment—Experiences from Two Alpine Testing Sites. J. Civ. Eng. Archit. 2011, 5, 661–669. [Google Scholar] [CrossRef]
- Figini, G.; Torelli, U. Impianti Elettrici Civili. Manuale di Applicazione Delle Norme CEI; Hoepli Editor: Milano, Italy, 2000. [Google Scholar]
- Degasperi, M.; Franceschini, A.; Curone, D.; Chersich, M. Monitoraggio di versante in continua con reti di ricevitori GNSS L1 a basso costo e a controllo remoto. In Proceedings of the Atti della Conferenza ASITA 2018, Bolzano, Italy, 27–29 November 2018; pp. 431–438. [Google Scholar]
- Zuliani, D.; Fabris, P.; Del Negro, E.; Bertoni, M.; Durì, G. Il sistema di monitoraggio GNSS di Esri Italia SENDAS: Il case history della frana di Tolmezzo (UD). In Proceedings of the Esri Conference Italy 2016, Rome, Italy, 20–21 April 2016. [Google Scholar] [CrossRef]
- Elliott, D.K.; Christopher, J.H. Understanding GPS: Principles and Applications; Kaplan, E.D., Ed.; Boston Artech House Publisher: Norwood, MA, USA, 1996. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. GPS Theory and Practice; Springer: New York, NY, USA, 2001; ISBN 978-3-211-83534-0. [Google Scholar]
- Bragato, P.L.; Comelli, P.; Saraò, A.; Zuliani, D.; Moratto, L.; Poggi, V.; Rossi, G.; Scaini, C.; Sugan, M.; Barnaba, C.; et al. The OGS–Northeastern Italy Seismic and Deformation Network: Current Status and Outlook. Seismol. Res. Lett. 2021, 92, 1704–1716. [Google Scholar] [CrossRef]
- Zuliani, D.; Fabris, P.; Rossi, G. FReDNet: Evolution of permanent GNSS receiver system. In New Advanced GNSS and 3D Spatial Techniques Applications to Civil and Environmental Engineering, Geophysics, Architecture, Archeology and Cultural Heritage, Lecture Notes in Geoinformation and Cartography; Cefalo, R., Zielinski, J., Barbarella, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 123–137. [Google Scholar]
- FreDNet, D.C. Friuli Regional Deformation Network Data Center; Istituto Nazionale di Oceanografia e Geofisica Sperimentale: Sgonico, Italy, 2016. [Google Scholar] [CrossRef]
- Battaglia, M.; Zuliani, D.; Pascutti, D.; Michelini, A.; Marson, I.; Murray, M.H.; Burgmann, R. Network Assesses Earthquake Potential in Italy’s Southern Alps. EOS 2003, 84, 262–264. [Google Scholar] [CrossRef]
- Malet, J.-P.; Maquaire, O.; Calais, E. The use of Global Positioning System techniques for the continuous monitoring of landslides: Application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 2002, 43, 33–54. [Google Scholar] [CrossRef] [Green Version]
Station | Instruments | Operating Interval |
---|---|---|
GPS1 | Single-frequency GPS | 2016–today |
GPS2 | Single-frequency GPS | 2016–today |
GPS3 | Single-frequency GPS | 2016–today |
GPS4 | Single-frequency GPS | 2016–today |
GPS5 | Single-frequency GPS | 2016–today |
GPS6 | Single-frequency GPS | 2016–today |
GPS7 | Single-frequency GPS | 2018–today |
GPS8 | Single-frequency GPS | 2018–today |
GPS9 | Single-frequency GPS | 2018–today |
GP10 | Single-frequency GPS | 2020–today |
GP11 | Single-frequency GPS | 2020–today |
GP12 | Single-frequency GPS | 2020–today |
CASO | Double-frequency GPS Rainfall gauge | 2015–today |
SISMO-1 | Seismometer + instrument for real-time GPS data | 2019–today |
PA | Piezometer | 2015–2019 |
PB | Piezometer | 2015–2019 |
Station | N (°) | E (°) | Elevation (m) | Up–Down (m/year) | East (m/year) | North (m/year) | Horizontal (m/year) | Direction (°) |
---|---|---|---|---|---|---|---|---|
FUSE | 46.414159 | 13.001142 | 532.076 | - | - | - | - | - |
TOLS | 46.404378 | 13.014218 | 378.016 | - | - | - | - | - |
CASO | 46.431848 | 12.993505 | 686.779 | −0.0732 | 0.3304 | −0.0994 | 0.3450 | 107 |
GPS1 | 46.432057 | 12.991639 | 729.649 | −0.4162 | 2.1765 | −0.3829 | 2.2099 | 100 |
GPS2 | 46.432598 | 12.990423 | 776.092 | −0.4547 | 1.9039 | −0.1665 | 1.9112 | 95 |
GPS3 | 46.432547 | 12.989969 | 789.059 | −1.4300 | 3.7369 | −0.3043 | 3.7493 | 95 |
GPS4 | 46.433579 | 12.988714 | 839.118 | −1.3037 | 2.3120 | −1.1722 | 2.5922 | 117 |
GPS5 | 46.433331 | 12.989399 | 808.717 | −0.6803 | 1.1923 | −0.7969 | 1.4341 | 124 |
GPS6 | 46.432486 | 12.991785 | 732.161 | −0.1566 | 0.9829 | −0.3507 | 1.0436 | 110 |
GPS7 | 46.435945 | 12.991565 | 804.152 | −0.7251 | 1.3422 | −1.1582 | 1.7728 | 131 |
GPS8 | 46.431764 | 12.990972 | 755.265 | −0.0172 | 0.2335 | −0.0945 | 0.2519 | 112 |
GPS9 | 46.433291 | 12.990992 | 769.645 | −0.3374 | 0.6846 | −0.3121 | 0.7524 | 115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuliani, D.; Tunini, L.; Di Traglia, F.; Chersich, M.; Curone, D. Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring. Sensors 2022, 22, 3526. https://doi.org/10.3390/s22093526
Zuliani D, Tunini L, Di Traglia F, Chersich M, Curone D. Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring. Sensors. 2022; 22(9):3526. https://doi.org/10.3390/s22093526
Chicago/Turabian StyleZuliani, David, Lavinia Tunini, Federico Di Traglia, Massimiliano Chersich, and Davide Curone. 2022. "Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring" Sensors 22, no. 9: 3526. https://doi.org/10.3390/s22093526
APA StyleZuliani, D., Tunini, L., Di Traglia, F., Chersich, M., & Curone, D. (2022). Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring. Sensors, 22(9), 3526. https://doi.org/10.3390/s22093526