An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming
Abstract
:1. Introduction
1.1. Conventional High Resolution Beamforming Methods
1.2. How to Suppress Noise in Beamforming?
1.3. How Does Deconvolution Decrease Noise?
1.4. Contributions
2. Problem Formulation and Proposed Method
2.1. Classical Method for CBF in Frequency Domain
2.2. Proposed SDV Method
2.3. Performance of SDV Method
3. Performance of SDV Method in Simulations
3.1. Performance of Frequency Resolution
3.1.1. Noise Suppression
3.1.2. Influence of Data Length on SDV Method
3.1.3. Influence of SNR on SDV Method
3.2. Performance of DOA
3.2.1. Performance of High Resolution
3.2.2. Less Sensibility to Noise
4. SDV for Experimental Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, M.; Wei, X.; Tang, Y.; Hu, D. A Robust Design for Aperture-Level Simultaneous Transmit and Receive with Digital Phased Array. Sensors 2022, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.C. Deconvolution of decomposed conventional beamforming. J. Acoust. Soc. Am. 2020, 148, EL195–EL201. [Google Scholar] [CrossRef] [PubMed]
- Chardon, G.; Boureau, U. Gridless three-dimensional compressive beamforming with the Sliding Frank-Wolfe algorithm. J. Acoust. Soc. Am. 2021, 150, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Fu, C.; Jin, Y.; Hu, Z.; Zhou, L. Robust Security Beamforming for SWIPT-Assisted Relay System with Channel Uncertainty. Sensors 2022, 22, 370. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.G.; Avenue, M. FFTW: An Adaptive Software Architecture for the Fft Matteo Frigo MIT Laboratory for Computer Science 545 Technology Square NE43-203 Massachusetts Institute of Technology. Technology 1998, 3, 1381–1384. [Google Scholar]
- Reddy, B.S.; Chatterji, B.N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 1996, 5, 1266–1271. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, D. An extended split-radix FFT algorithm. IEEE Signal Process. Lett. 2001, 8, 145–147. [Google Scholar] [CrossRef]
- Markovich, S.; Gannot, S.; Cohen, I. Multichannel Eigenspace Beamforming in a Reverberant Noisy Environment with Multiple Interfering Speech Signals. IEEE Trans. Audio Speech Lang. Process. 2009, 17, 1071–1086. [Google Scholar] [CrossRef]
- Pezeshki, A.; Van Veen, B.D.; Scharf, L.L.; Cox, H.; Nordenvaad, M.L. Eigenvalue Beamforming Using a Multirank MVDR Beamformer and Subspace Selection. IEEE Trans. Signal Process. 2008, 56, 1954–1967. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Chen, J.; Benesty, J. Insights into Frequency-Invariant Beamforming with Concentric Circular Microphone Arrays. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 2305–2318. [Google Scholar] [CrossRef]
- Krishnaveni, V.; Kesavamurthy, T.; Aparna, B. Beamforming for Direction-of-Arrival (DOA) Estimation-A Survey. Int. J. Comput. Appl. 2013, 61, 4–11. [Google Scholar] [CrossRef]
- Sohrabi, F.; Chen, Z.; Yu, W. Deep Active Learning Approach to Adaptive Beamforming for mmWave Initial Alignment. In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4940–4944. [Google Scholar] [CrossRef]
- Sun, S.; Ye, Z. Robust adaptive beamforming based on a method for steering vector estimation and interference covariance matrix reconstruction. Signal Process. 2021, 182, 107939. [Google Scholar] [CrossRef]
- Mamistvalov, A.; Eldar, Y.C. Compressed Fourier-Domain Convolutional Beamforming for Sub-Nyquist Ultrasound Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, R.; Blu, T.; Zhao, H. Generic FRI-Based DOA Estimation: A Model-Fitting Method. IEEE Trans. Signal Process. 2021, 69, 4102–4115. [Google Scholar] [CrossRef]
- Mamistvalov, A.; Eldar, Y.C. Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3484–3496. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Stoica, P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Process. 1996, 44, 1469–1484. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Stoica, P. Adaptive techniques for MIMO radar. In Proceedings of the Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, MA, USA, 12–14 July 2006; pp. 258–262. [Google Scholar]
- Stoica, P.; Larsson, E.G.; Li, J. Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data. Astron. J. 2000, 120, 2163–2173. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wei, L.; Zeng, L. Ultra-short-term Photovoltaic Power Prediction Based on VMD-LSTM-RVM Model. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 042020. [Google Scholar] [CrossRef]
- Li, N.; Sun, Z.; Sun, J.; Liu, W.; Wei, L.; Li, T.; Li, B.; Wang, Z. Deformation and breakup mechanism of water droplet in acidic crude oil emulsion under uniform electric field: A molecular dynamics study. Colloids Surf. A Physicochem. Eng. Asp. 2021, 632, 127746. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, P.; Liao, B. An improved pre-processing approach for convex-geometry based blind source separation. Digit. Signal Process. 2021, 114, 103048. [Google Scholar] [CrossRef]
- Ottersten, B.; Viberg, M.; Kailath, T. Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data. IEEE Trans. Signal Process. 1992, 40, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Viberg, M.; Ottersten, B. Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 1991, 39, 1110–1121. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wu, N.; Zhao, Y.; Yao, H. Attribute-Based Double Constraint Denoising Network for Seismic Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5304–5316. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y. Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network. Energy Convers. Manag. 2018, 157, 1–12. [Google Scholar] [CrossRef]
- Yu, Y.-L.; Li, W.; Sheng, D.-R.; Chen, J.-H. A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network. J. Zhejiang Univ. Sci. A 2016, 17, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Wind, O. Peer-Reviewed Technical Communication. IEEE J. Ocean. Eng. 2011, 36, 489–499. [Google Scholar]
- Wang, H.; Miller, P.C. Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration. IEEE Trans. Image Process. 2014, 23, 848–854. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Yu, L.; Tian, S.; Ma, X.; Xing, Y.; Xin, N.; Cai, W. MC-Net: Multiple max-pooling integration module and cross multi-scale deconvolution network. Knowl. Based Syst. 2021, 231, 107456. [Google Scholar] [CrossRef]
- Hui, L.; Xu, R.; Xie, J.; Qian, J.; Yang, J. Progressive Point Cloud Deconvolution Generation Network. In Lecture Notes in Computer Science, Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; Volume 12360, pp. 397–413. [Google Scholar]
- Miao, Y.; Zhang, B.; Lin, J.; Zhao, M.; Liu, H.; Liu, Z.; Li, H. A review on the application of blind deconvolution in machinery fault diagnosis. Mech. Syst. Signal Process. 2022, 163, 108202. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y. Joint Estimation of DOA and TDOA of Multiple Reflections by Matrix Pencil in Mobile Communications. IEEE Access 2019, 7, 15469–15477. [Google Scholar] [CrossRef]
- Gerstoft, P.; Nannuru, S.; Mecklenbräuker, C.F.; Leus, G. DOA Estimation in heteroscedastic noise. Signal Process. 2019, 161, 63–73. [Google Scholar] [CrossRef]
- Zhong, S.; Xu, L.; Yang, H.; Xiao, P. DOA Estimation of Underwater Object Based on Cross-Spectrum Deconvolution Algorithm. In Lecture Notes in Electrical Engineering, Proceedings of the 2021 Chinese Intelligent Automation Conference, Zhanjiang, China, 5–7 November 2021; Springer: Singapore, 2022; Volume 801. [Google Scholar]
- Xu, Z.; Li, H.; Yang, K. A Modified Differential Beamforming and Its Application for DOA Estimation of Low Frequency Underwater Signal. IEEE Sens. J. 2020, 20, 8890–8902. [Google Scholar] [CrossRef]
- Hu, W.; Meng, Q.; Lu, Y.; Xu, Y.; Nwadiuso, O.J.; Yu, J.; Liu, W.; Jing, G.; Li, W.; Liu, W. Fourier Deconvolution Ion Mobility Spectrometry. Talanta 2022, 241, 123270. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Sun, D.; Mei, J.; Teng, T. Spatiotemporal two-dimensional deconvolution beam imaging technology. Appl. Acoust. 2021, 183, 108310. [Google Scholar] [CrossRef]
- Xie, L.; Sun, C.; Zhuo, J.; Liu, X.; Kong, D.; Fan, K. A Deconvolved Method for Suppressing the Sidelobes in the DOA Estimation. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Chu, N.; Zhao, H.; Yu, L.; Huang, Q.; Ning, Y. Fast and High-Resolution Acoustic Beamforming: A Convolution Accelerated Deconvolution Implementation. IEEE Trans. Instrum. Meas. 2021, 70, 6502415. [Google Scholar] [CrossRef]
- Deng, L.; Xu, G.; Dai, Y.; Zhu, H. A Dual Stream Spectrum Deconvolution Neural Network. IEEE Trans. Ind. Inform. 2022, 18, 3086–3094. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, C.; Goodman, N.A.; Song, W.-Z.; Shi, Z. Coprime array adaptive beamforming based on compressive sensing virtual array signal. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2981–2985. [Google Scholar] [CrossRef]
- Xenaki, A.; Gerstoft, P.; Mosegaard, K. Compressive beamforming. J. Acoust. Soc. Am. 2014, 136, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Peng, L.; Wei, M.; Chen, P.; Guo, S. An Improved L1-Svd Algorithm Based on Noise Subspace for Doa Estimation. Prog. Electromagn. Res. C 2012, 29, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Guanghui, C.; Xiaoping, Z.; Shuang, J.; Anning, Y.; Qi, L. High Accuracy Near-Field Localization Algorithm at Low SNR Using Fourth-Order Cumulant. IEEE Commun. Lett. 2020, 24, 553–557. [Google Scholar] [CrossRef]
- Xu, C.; Xiao, X.; Sun, S.; Rao, W.; Chng, E.S.; Li, H. Weighted Spatial Covariance Matrix Estimation for MUSIC Based TDOA Estimation of Speech Source. In Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech 2017, Stockholm, Sweden, 20–24 August 2017; pp. 1894–1898. [Google Scholar] [CrossRef] [Green Version]
- Mandel, M.I.; Weiss, R.J.; Ellis, D.P.W. Model-Based Expectation-Maximization Source Separation and Localization. IEEE Trans. Audio Speech Lang. Process. 2010, 18, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Laufer-Goldshtein, B.; Talmon, R.; Gannot, S. Audio source separation by activity probability detection with maximum correlation and simplex geometry. EURASIP J. Audio Speech Music Process. 2021, 2021, 5. [Google Scholar] [CrossRef]
Input SNR (dB) | Output SNR (dB) 1 | Output SNR (dB) 2 | Beam Width (Hz) 2 |
---|---|---|---|
−27 | −2 | 16.3 | 1 |
−26 | 3 | 24.8 | 1 |
−25 | 3.5 | 25.4 | 1 |
−24 | 4 | 25.8 | 1 |
−23 | 4.5 | 26.9 | 1 |
−22 | 5 | 28.1 | 0.1 |
−21 | 5.5 | 29.3 | <0.1 |
−20 | 6.5 | 30 | <0.1 |
Methods | CBF | MUSIC | CS-OMP | Im-L1-SVD | 4order-MUSIC | WSCM-MUSIC | MESSL | SRP-PHAT | SDV |
---|---|---|---|---|---|---|---|---|---|
Direction (°) | −42, 10 | 9, 78 | 0, 17, 31 | 29 | 9, 78 | −20, 46 | 42 | 0 | 33 |
SNR (dB) | 10.45 | 11.87 | >50 | 37.1 | 17.54 | - | - | - | >50 |
Width (°) | >2 | 2 | 0.6 | 1.2 | 1.3 | - | - | - | 1.2 |
Time (s) | 0.318 | 2.442 | 431.646 | 588.574 | 4.588 | 4.637 | 5.648 | 0.045 | 2.25 |
Methods | CBF | MUSIC | CS | SDV |
---|---|---|---|---|
Direction (°) | −62, −57, 7, 11 | −62, −57, 7, 11 | −59, −37, −17, 15, 40 | −62, −57, 7, 11 |
SNR (dB) | 20.1 | 17.4 | >50 | >50 |
Width (°) | 2 | 2 | 0.7 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Miao, Q.; Sun, X.; Ren, H.; Ye, L.; Song, K. An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming. Sensors 2022, 22, 2327. https://doi.org/10.3390/s22062327
Su X, Miao Q, Sun X, Ren H, Ye L, Song K. An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming. Sensors. 2022; 22(6):2327. https://doi.org/10.3390/s22062327
Chicago/Turabian StyleSu, Xiruo, Qiuyan Miao, Xinglin Sun, Haoran Ren, Lingyun Ye, and Kaichen Song. 2022. "An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming" Sensors 22, no. 6: 2327. https://doi.org/10.3390/s22062327
APA StyleSu, X., Miao, Q., Sun, X., Ren, H., Ye, L., & Song, K. (2022). An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming. Sensors, 22(6), 2327. https://doi.org/10.3390/s22062327