Design, Fabrication, and Characterisation of a Label-Free Nanosensor for Bioapplications
Abstract
:1. Introduction
2. Doubly Clamped Beam Analysis
3. Numerical Analysis
4. Hybrid Structure Fabrication
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clarck, L.C., Jr.; Lyons, C. Electrodes system for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Kuila, T.; Bose, A.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent Advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A.C.; Mitragotri, S.; Banerjee, K. MoS2 Field–Effect Transistor for Next–Generation Label–Free Biosensors. ACSNANO 2014, 8, 3992–4003. [Google Scholar]
- Lu, S.; Guo, X. Carbon nanomaterials field–effect–transistor–based biosensor. NGP Asia Mater. 2012, 4, e23. [Google Scholar] [CrossRef] [Green Version]
- Farazmand, M.H.; Rodrigues, R.; Gardner, J.W.; Charmet, J. Design and Development of a Disposable Lab-on-a-Chip for Prostate Cancer Detection. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1579–1583. [Google Scholar]
- Liu, J.; Jasim, I.; Dastider, S.G.; Abdullah, A.; Shen, Z.; Dweik, F.; Zhao, L.; Yuksek, N.S.; Zhang, S.; Dweik, M.; et al. Impedance Based MEMS Biosensor for Detection of Foodborne Pathogen. In Proceedings of the 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Singapore, 22–26 April 2018; pp. 623–626. [Google Scholar]
- Gajasinghe, R.W.R.L.; Tigli, O.; Jones, M.; Ince, T. Label–free tumor cell detection and differentiation based on electrical impedance spectroscopy. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Andreassen, E.; Mielnik, M.M. BioMEMS meets lab–on–a–chip: Heterogeneous integration of silicon MEMS and NEMS in polymer microfluidics. In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), Helsinki, Finland, 16–18 September 2014; pp. 1–5. [Google Scholar]
- Niranjan, A.; Gupta, P.; Rajoriya, M. Piezoelectric MEMS Micro-Cantilever Biosensor for Detection of SARS-CoV-2. In Proceedings of the 2021 International Conference on Communication, Control and Information Sciences (ICCISc), Idukki, India, 16–18 June 2021; pp. 1–5. [Google Scholar]
- Wang, L.; Sipe, D.M.; Xu, Y.; Lin, Q. A MEMS Thermal Biosensor for Metabolic Monitoring Applications. J. Microelectromech. Syst. 2008, 17, 318–327. [Google Scholar] [CrossRef]
- Burnett, R.; Harris, A.; Ortiz, P.; Hedley, J.; Burdess, J.; Keegan, N.; Spoors, J.; McNeil, C. Electronic Detection Strategies for a MEMS–Based Biosensor. J. Microelectromech. Syst. 2013, 22, 276–284. [Google Scholar] [CrossRef]
- Yarraguntla, N.; Tirumala, N.; Shameem, S.; Rao, K.S. Detection of Hepatitis viruses (HBV, HAV, HCV) in serum using MEMS based Bio-Sensor. In Proceedings of the 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 15–16 February 2018; pp. 405–409. [Google Scholar]
- Moudgil, A.; Singh, K.K.; Swaminathan, S. MEMS based design and analysis of a biosensor for detection of hepatitis virus. In Proceedings of the 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), Rome, Italy, 27–30 July 2015; pp. 805–808. [Google Scholar]
- Cooper, C.D.; Clementi, N.C.; Barba, L.A. Probing Protein orientation near charged nanosurfaces for simulation-assisted biosensor design. J. Chem. Phys. 2015, 143, 124709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Ramírez, M.A.; Bello-Jiménez, M.A.; González-Reynoso, O.; Castellanos-Alvarado, E.A.; Vargas-Rodríguez, E. Nanostructure for Bio-Sensing Aplications featuring NEMS and MOS as a Hybrid Structure. In Proceedings of the XII International Conference on Surfaces, Materials and Vacuum, San Luis Potosí, México, 23 September 2019; p. 184. [Google Scholar]
- Xiao, M.; Chen, Y.M.; Biao, M.N.; Zhang, X.D.; Yang, B.C. Bio-functionalization of biomedical metals. Mater. Sci. Eng. C 2017, 70, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Bañuls, M.J.; Rosa Puchades, R.; Maquieira, A. Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review. Anal. Chim. Acta 2013, 777, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cattani-Scholz, A. Functional Organophosphonate Interfaces for Nanotechnology: A Review. ACS Appl. Mater. Interfaces 2017, 9, 25643–25655. [Google Scholar] [CrossRef] [PubMed]
- Cooper, O.; Wang, B.; Brown, C.L.; Tiralongo, J.; Iacopi, F. Toward Label-Free Biosensing With Silicon Carbide: A Review. IEEE Access 2016, 4, 477–497. [Google Scholar] [CrossRef]
- Nair, P.R.; Alam, M.A. Theory of “Selectivity” of label-free nanobiosensors: A geometro-physical perspective. J. Appl. Phys. 2010, 107, 064701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir and van der Waals forces: Advantages and problems. In Proceedings of the Peter the Great St.Petersburg Polytechnic Univercity, St. Petersburg, Russia, 9 July 2015; pp. 41–65. [Google Scholar]
- Rodriguez, A.W.; Capasso, F.; Johnson, S.T. The Casimir effect in microstructured geometries. Nat. Photonics 2015, 5, 211–221. [Google Scholar] [CrossRef]
- De los Santos, H.J. Nanoelectromechanical Quantum Circuits and Systems. Proc. IEEE 2003, 91, 1907–1921. [Google Scholar] [CrossRef]
- Drumond, C.J.; Chan, D.Y.C. Theoretical Analysis of the Soiling of Nonstick Organic Materials. Langmuir 1996, 12, 3356. [Google Scholar] [CrossRef]
- Winterton, R.H.S. Van der Waals Forces. Contemp. Phys. 1970, 11, 559. [Google Scholar] [CrossRef]
- Hamaker, H.C. The London-van der Waals Attraction between Spherical Particles. Phys. IV 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bhattacharyya, T.K. Development of a surface micro-machined binary logic inverter for ultra low frequency MEMS sensor applications. J. Micromech. Microeng. 2010, 20, 105026. [Google Scholar] [CrossRef]
- Tian, Y.; Pesika, N.; Zeng, H.; Rosenberg, K.; Zhao, B.; McGuiggan, P.; Autumn, K.; Israelachvili, J. Adhesion and Friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. USA 2006, 103, 19320–19325. [Google Scholar] [CrossRef] [Green Version]
- Analyzer, Coventorware. Available online: www.coventor.com (accessed on 12 May 2019).
- Comsol Multiphysics. Available online: www.comsol.com (accessed on 5 June 2019).
Material | Thickness (nm) | Layer |
---|---|---|
Aluminium | 30 | SG |
Air | 20 | Gap |
SiO | 7 | Tunnel Oxide |
Si | 100 | Mechanical Support |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ramírez, M.A.; González-Reynoso, O.; Bello-Jiménez, M.A.; Vargas-Rodríguez, E. Design, Fabrication, and Characterisation of a Label-Free Nanosensor for Bioapplications. Sensors 2022, 22, 1806. https://doi.org/10.3390/s22051806
García-Ramírez MA, González-Reynoso O, Bello-Jiménez MA, Vargas-Rodríguez E. Design, Fabrication, and Characterisation of a Label-Free Nanosensor for Bioapplications. Sensors. 2022; 22(5):1806. https://doi.org/10.3390/s22051806
Chicago/Turabian StyleGarcía-Ramírez, Mario Alberto, Orfil González-Reynoso, Miguel Angel Bello-Jiménez, and Everado Vargas-Rodríguez. 2022. "Design, Fabrication, and Characterisation of a Label-Free Nanosensor for Bioapplications" Sensors 22, no. 5: 1806. https://doi.org/10.3390/s22051806
APA StyleGarcía-Ramírez, M. A., González-Reynoso, O., Bello-Jiménez, M. A., & Vargas-Rodríguez, E. (2022). Design, Fabrication, and Characterisation of a Label-Free Nanosensor for Bioapplications. Sensors, 22(5), 1806. https://doi.org/10.3390/s22051806