A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems
Abstract
:1. Introduction
2. Background and Motivation
3. The Long Journey from Fieldbus to the RTEs Technologies
4. The Time Sensitive Networking Project
4.1. Network Architecture and Configuration
4.2. Synchronization
4.2.1. Network Time–Aware Devices
4.2.2. The Synchronization Process
- The preciseOriginTimeStamp, , expressed in the GM timebase containing the timestamp originally created by the GM.
- The correctionfieldi-1, , containing the total delay introduced from the generation of . This field is the sum of all the propagation delays introduced by the links used to convey the message before the considered stations and of all the residence times introduced by the bridges used to convey the timing information before the considered station. This parameter is expressed in the GrandMaster time base.
- The rate ratio between the the GM frequency and the i-1-th device.
4.3. The Resource Reservation Capabilities of TSN
4.3.1. The Stream Reservation Protocol
4.3.2. The Transmission Selection Algorithms
- For , the credit of a specific queue starts from 0 and maintains that level until a frame enters the related queue;
- In a frame is queued but, due to the presence of the higher-priority frame, can not be transmitted immediately. For , as the transmission of the queued frame is blocked by the higher priority one, the queue accumulates credit;
- For , the frame is transmitted and the credit level decreases;
- For , as the queue is indebted, also if no frame is queued the credit increases until reaches the null value;
- For , as a frame is blocked by a higher priority transmission, the credit level reaches the maximum value;
- For , the transmission of a frame decreases the credit. The remaining credit is positive, but no frame is queued so exactly after the instant the credit is restored to zero;
- For , it is possible to notice that if the queue is indebted (i.e., the credit is negative) it is not possible to start a new frame transmission, and it is needed to wait until credit becomes non-negative.
4.4. Frame Preemption and Interspersing Express Traffic (IET)
4.5. Enhancements for Scheduled Traffic
4.6. Cycling Queuing and Forwarding
4.7. Frame Replication and Elimination for Reliability (FRER)
5. The TSN Profile for Industrial Automation
6. TSN in Time–Critical, Possibly Wireless–Based, Measurement Systems
6.1. A Representative Test Case
6.2. TSN over Wi-Fi
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashton, K. That ’Internet of Things’ Thing. RFID J. 2009, 22, 97–114. [Google Scholar]
- Trappey, A.J.; Trappey, C.V.; Govindarajan, U.H.; Chuang, A.C.; Sun, J.J. A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Adv. Eng. Inform. 2017, 33, 208–229. [Google Scholar] [CrossRef]
- Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE Access 2018, 6, 78238–78259. [Google Scholar] [CrossRef]
- Včelák, J.; Vodička, A.; Maška, M.; Mrňa, J. Smart building monitoring from structure to indoor environment. In Proceedings of the 2017 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 25–26 May 2017; pp. 1–5. [Google Scholar]
- Pai, P.; Shashikala, K.L. Smart City Services—Challenges and Approach. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 553–558. [Google Scholar]
- Monteiro, K.; Rocha, E.; Silva, E.; Santos, G.L.; Santos, W.; Endo, P.T. Developing an e-Health System Based on IoT, Fog and Cloud Computing. In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018; pp. 17–18. [Google Scholar]
- Ma, J.; Feng, S.; Li, X.; Zhang, X.; Zhang, D. Research on the Internet of Things Architecture for Intelligent Passenger Transportation Services and its Application. In Proceedings of the 2019 4th International Conference on Electromechanical Control Technology and Transportation (ICECTT), Guilin, China, 26–28 April 2019; pp. 194–197. [Google Scholar]
- Trilles, S.; González-Pérez, A.; Huerta, J. An IoT Platform Based on Microservices and Serverless Paradigms for Smart Farming Purposes. Sensors 2020, 20, 2418. [Google Scholar] [CrossRef] [PubMed]
- Ooi, B.Y.; Shirmohammadi, S. The potential of IoT for instrumentation and measurement. IEEE Instrum. Meas. Mag. 2020, 23, 21–26. [Google Scholar] [CrossRef]
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Ghazivakili, M.; Demartini, C.; Zunino, C. Industrial data-collector by enabling OPC-UA standard for Industry 4.0. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–8. [Google Scholar]
- Jeong, S.; Na, W.; Kim, J.; Cho, S. Internet of Things for Smart Manufacturing System: Trust Issues in Resource Allocation. IEEE Internet Things J. 2018, 5, 4418–4427. [Google Scholar] [CrossRef]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Xu, G.; Yu, W.; Griffith, D.; Golmie, N.; Moulema, P. Toward Integrating Distributed Energy Resources and Storage Devices in Smart Grid. IEEE Internet Things J. 2017, 4, 192–204. [Google Scholar] [CrossRef]
- Ahmed, N.; De, D.; Hussain, I. Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet Things J. 2018, 5, 4890–4899. [Google Scholar] [CrossRef]
- World Economic Forum. Fourth Industrial Revolution, Beacons of Technology and Innovation in Manufacturing; World Economic Forum: Cologny, Switzerland, 2019. [Google Scholar]
- World Economic Forum. Shaping the Sustainability of Production Systems: Fourth Industrial Revolution Technologies for Competitiveness and Sustainable Growth; World Economic Forum: Cologny, Switzerland, 2019. [Google Scholar]
- Yavari, A.; Jayaraman, P.P.; Georgakopoulos, D.; Nepal, S. ConTaaS: An Approach to Internet-Scale Contextualisation for Developing Efficient Internet of Things Applications. In Proceedings of the Hawaii International Conference on System Sciences, Hawaii County, HI, USA, 4–7 January 2017. [Google Scholar] [CrossRef] [Green Version]
- Bhadoria, R.S.; Bajpai, D. Stabilizing Sensor Data Collection for Control of Environment-Friendly Clean Technologies Using Internet of Things. Wirel. Pers. Commun. 2019, 108, 493–510. [Google Scholar] [CrossRef]
- Daponte, P.; Lamonaca, F.; Picariello, F.; De Vito, L.; Mazzilli, G.; Tudosa, I. A Survey of Measurement Applications Based on IoT. In Proceedings of the 2018 Workshop on Metrology for Industry 4.0 and IoT, Brescia, Italy, 16–18 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Gao, R.X.; Wang, L.; Helu, M.; Teti, R. Big Data Analytics for Smart Factories of the Future. CIRP Ann. 2020, 69, 668–692. [Google Scholar] [CrossRef]
- Morato, A.; Vitturi, S.; Cenedese, A.; Fadel, G.; Tramarin, F. The Fail Safe over EtherCAT (FSoE) Protocol Implemented on the IEEE 802.11 WLAN. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1163–1170. [Google Scholar] [CrossRef]
- Peserico, G.; Morato, A.; Tramarin, F.; Vitturi, S. Functional Safety Networks and Protocols in the Industrial Internet of Things Era. Sensors 2021, 21, 6073. [Google Scholar] [CrossRef] [PubMed]
- Heymann, S.; Stojanovci, L.; Watson, K.; Nam, S.; Song, B.; Gschossmann, H.; Schriegel, S.; Jasperneite, J. Cloud-based Plug and Work architecture of the IIC Testbed Smart Factory Web. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1, pp. 187–194. [Google Scholar] [CrossRef]
- Kobzan, T.; Schriegel, S.; Althoff, S.; Boschmann, A.; Otto, J.; Jasperneite, J. Secure and Time-sensitive Communication for Remote Process Control and Monitoring. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1, pp. 1105–1108. [Google Scholar] [CrossRef]
- Lo Bello, L.; Steiner, W. A Perspective on IEEE Time-Sensitive Networking for Industrial Communication and Automation Systems. Proc. IEEE 2019, 107, 1094–1120. [Google Scholar] [CrossRef]
- Bruckner, D.; Stanica, M.P.; Blair, R.; Schriegel, S.; Kehrer, S.; Seewald, M.; Sauter, T. An Introduction to OPC UA TSN for Industrial Communication Systems. Proc. IEEE 2019, 107, 1121–1131. [Google Scholar] [CrossRef]
- PTB. Metrology for the Digitalization of the Economy and Society. Available online: https://www.ptb.de/cms/fileadmin/internet/forschung_entwicklung/digitalisierung/PTB-Digitalisierungsstudie_2018_EN.pdf (accessed on 11 February 2022).
- Cristaldi, L.; Ferrero, A.; Muscas, C.; Salicone, S.; Tinarelli, R. The effect of net latency on the uncertainty in distributed measurement systems. In Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276), Anchorage, AK, USA, 21–23 May 2002; Volume 2, pp. 1265–1269. [Google Scholar] [CrossRef]
- Branz, F.; Antonello, R.; Pezzutto, M.; Vitturi, S.; Tramarin, F.; Schenato, L. Drive-by-Wi-Fi: Model-Based Control Over Wireless at 1 kHz. IEEE Trans. Control. Syst. Technol. 2021, 1–12. [Google Scholar] [CrossRef]
- ISO Guide to the Expression of Uncertainty in Measurement (GUM). Available online: https://www.iso.org/standard/50461.html (accessed on 11 February 2022).
- Sauter, T. The Three Generations of Field-Level Networks—Evolution and Compatibility Issues. IEEE Trans. Ind. Electron. 2010, 57, 3585–3595. [Google Scholar] [CrossRef]
- Felser, M.; Sauter, T. The fieldbus war: History or short break between battles? In Proceedings of the 4th IEEE International Workshop on Factory Communication Systems, Vasteras, Sweden, 28–30 August 2002; pp. 73–80. [Google Scholar] [CrossRef]
- Felser, M. The Fieldbus Standards: History and Structures. Available online: https://www.profilab.ch/papers/FE-TR-0205.pdf (accessed on 11 February 2022).
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Danielis, P.; Skodzik, J.; Altmann, V.; Schweissguth, E.B.; Golatowski, F.; Timmermann, D.; Schacht, J. Survey on real-time communication via ethernet in industrial automation environments. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Felser, M.; Sauter, T. Standardization of industrial Ethernet-the next battlefield? In Proceedings of the IEEE International Workshop on Factory Communication Systems, Vienna, Austria, 22–24 September 2004; pp. 413–420. [Google Scholar] [CrossRef]
- Jasperneite, J.; Imtiaz, J.; Schumacher, M.; Weber, K. A Proposal for a Generic Real-Time Ethernet System. IEEE Trans. Ind. Inform. 2009, 5, 75–85. [Google Scholar] [CrossRef]
- Jasperneite, J.; Schumacher, M.; Weber, K. Limits of increasing the performance of Industrial Ethernet protocols. In Proceedings of the 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), Patras, Greece, 25–28 September 2007; pp. 17–24. [Google Scholar] [CrossRef]
- Lv, Y.; Yu, H.; Wang, T.; Yang, Z. Fieldbus interoperation technologies. In Proceedings of the Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), Hangzhou, China, 15–19 June 2004; Voume 4, pp. 3620–3623. [Google Scholar]
- Yanjun, F.; Jun, X. An approach for interoperation between heterogeneous fieldbus systems. In Proceedings of the 2005 IEEE Conference on Emerging Technologies and Factory Automation, Catania, Italy, 19–22 September 2005; Voume 2, pp. 5–243. [Google Scholar]
- Arjmandi, F.; Moshiri, B. Fieldbus Interoperability on Ethernet. In Proceedings of the 2007 5th IEEE International Conference on Industrial Informatics, Vienna, Austria, 23–27 June 2007; Voume 1, pp. 213–218. [Google Scholar]
- Zhong, T.; Zhan, M.; Peng, Z.; Hong, W. Industrial wireless communication protocol WIA-PA and its interoperation with Foundation Fieldbus. In Proceedings of the 2010 International Conference on Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; Volume 4, pp. V4–370–V4–374. [Google Scholar]
- Dang, T.; Merieux, C.; Pizel, J.; Deulet, N. On the Road to Industry 4.0: A Fieldbus Architecture to Acquire Specific Smart Instrumentation Data in Existing Industrial Plant for Predictive Maintenance. In Proceedings of the 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), Cairns, Australia, 13–15 June 2018; pp. 854–859. [Google Scholar]
- Bellagente, P.; Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E. Enabling PROFINET devices to work in IoT: Characterization and requirements. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016; pp. 1–6. [Google Scholar]
- Vitturi, S.; Zunino, C.; Sauter, T. Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G. Proc. IEEE 2019, 107, 944–961. [Google Scholar] [CrossRef]
- Li, Q.; Tang, Q.; Chan, I.; Wei, H.; Pu, Y.; Jiang, H.; Li, J.; Zhou, J. Smart Manufacturing Standardization: Architectures, Reference Models and Standards Framework. Comput. Ind. 2018, 101, 91–106. [Google Scholar] [CrossRef]
- Schlesinger, R.; Springer, A.; Sauter, T. Concept for the coexistence of standard and Real-time Ethernet. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Dietrich, D.; Bruckner, D.; Zucker, G.; Palensky, P. Communication and Computation in Buildings: A Short Introduction and Overview. IEEE Trans. Ind. Electron. 2010, 57, 3577–3584. [Google Scholar] [CrossRef] [Green Version]
- Imtiaz, J.; Jasperneite, J.; Schriegel, S. A proposal to integrate process data communication to IEEE 802.1 Audio Video Bridging (AVB). In Proceedings of the ETFA2011, Toulouse, France, 5–9 September 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Zezulka, F.; Marcon, P.; Bradac, Z.; Arm, J.; Benesl, T. Time-Sensitive Networking as the Communication Future of Industry 4.0. IFAC-PapersOnLine 2019, 52, 133–138. [Google Scholar] [CrossRef]
- Genc, E.; Del Carpio, L.F. Wi-Fi QoS Enhancements for Downlink Operations in Industrial Automation Using TSN. In Proceedings of the 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), Sundsvall, Sweden, 27–29 May 2019; pp. 1–6. [Google Scholar]
- IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014); IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged Networks. IEEE: New York, NY, USA, 6 July 2018; pp. 1–1993.
- Time-Sensitive Networking (TSN) Task Group Official Website. Available online: https://1.ieee802.org/tsn/ (accessed on 11 February 2022).
- IEEE Std 802.1AB-2016 (Revision of IEEE Std 802.1AB-2009); IEEE Standard for Local and Metropolitan Area Networks-Station and Media Access Control Connectivity Discovery. IEEE: New York, NY, USA, 11 March 2016; pp. 1–146. [CrossRef]
- IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011); IEEE Standard for Local and Metropolitan Area Networks–Timing and Synchronization for Time-Sensitive Applications. IEEE: New York, NY, USA, 19 June 2020; pp. 1–421. [CrossRef]
- IEEE Std 802.1AX-2020 (Revision of IEEE Std 802.1AX-2014); IEEE Standard for Local and Metropolitan Area Networks–Link Aggregation. IEEE: New York, NY, USA, 29 May 2020; pp. 1–333. [CrossRef]
- IEEE Std 802.1CB-2017; IEEE Standard for Local and Metropolitan Area Networks–Frame Replication and Elimination for Reliability. IEEE: New York, NY, USA, 27 October 2017; pp. 1–102.
- IEEE Std 802.1CS-2020; IEEE Standard for Local and Metropolitan Area Networks–Link-local Registration Protocol. IEEE: New York, NY, USA, 23 April 2021; pp. 1–151. [CrossRef]
- P802.1CQ–Multicast and Local Address Assignment. Available online: https://1.ieee802.org/tsn/802-1cq/ (accessed on 11 February 2022).
- P802.1DC–Quality of Service Provision by Network Systems. Available online: https://1.ieee802.org/tsn/802-1dc/ (accessed on 11 February 2022).
- IEEE Std 802-2014 (Revision to IEEE Std 802-2001); IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture. IEEE: New York, NY, USA, 30 June 2014; pp. 1–74. [CrossRef]
- P802.1f–YANG Data Model for EtherTypes. Available online: https://1.ieee802.org/tsn/802f/ (accessed on 11 February 2022).
- P802.1ABcu–LLDP YANG Data Model. Available online: https://1.ieee802.org/tsn/802-1abcu/ (accessed on 11 February 2022).
- P802.1ABdh–Support for Multiframe Protocol Data Units. Available online: https://1.ieee802.org/tsn/802-1abdh/ (accessed on 11 February 2022).
- P802.1ASdm–Hot Standby. Available online: https://1.ieee802.org/tsn/802-1asdm/ (accessed on 11 February 2022).
- P802.1ASdn–YANG Data Model. Available online: https://1.ieee802.org/tsn/802-1asdn/ (accessed on 11 February 2022).
- P802.1CBcv–FRER YANG Data Model and Management Information Base Module. Available online: https://1.ieee802.org/tsn/802-1cbcv/ (accessed on 11 February 2022).
- P802.1CBdb–FRER Extended Stream Identification Functions. Available online: https://1.ieee802.org/tsn/802-1cbdb/ (accessed on 11 February 2022).
- IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-2005); IEEE Standard for Local and Metropolitan Area Networks-Virtual Bridged Local Area Networks Amendment 14: Stream Reservation Protocol (SRP). IEEE: New York, NY, USA, 30 September 2010; pp. 1–119.
- IEEE Std 802.1Qav-2009 (Amendment to IEEE Std 802.1Q-2005); IEEE Standard for Local and Metropolitan Area Networks-Virtual Bridged Local Area Networks Amendment 12: Forwarding and Queuing Enhancements for Time-Sensitive Streams. IEEE: New York, NY, USA, 5 January 2010; pp. C1–C72.
- IEEE Std 802.1Qaz-2011 (Amendment to IEEE Std 802.1Q-2011 as Amended by IEEE Std 802.1Qbe-2011, IEEE Std 802.1Qbc-2011, and IEEE Std 802.1Qbb-2011); IEEE Standard for Local and Metropolitan Area Networks–Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks–Amendment 18: Enhanced Transmission Selection for Bandwidth Sharing Between Traffic Classes. IEEE: New York, NY, USA, 30 September 2011; pp. 1–110.
- IEEE Std 802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 26: Frame Preemption. IEEE: New York, NY, USA, 30 August 2016; pp. 1–52.
- IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as Amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 25: Enhancements for Scheduled Traffic. IEEE: New York, NY, USA, 18 March 2016; pp. 1–57.
- IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q-2014 as Amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q-2014/Cor 1-2015); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 24: Path Control and Reservation. IEEE: New York, NY, USA, 11 March 2016; pp. 1–120.
- IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as Amended by IEEE Std 802.1Qcp-2018); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 31: Stream Reservation Protocol (SRP) Enhancements and Performance Improvements. IEEE: New York, NY, USA, 31 October 2018; pp. 1–208.
- IEEE 802.1Qch-2017 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd(TM)-2015, IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE Std 802.1Qbu-2016, IEEE Std 802.1Qbz-2016, and IEEE Std 802.1Qci-2017); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 29: Cyclic Queuing and Forwarding. IEEE: New York, NY, USA, 28 June 2017; pp. 1–30.
- IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as Amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016); IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged Networks–Amendment 28: Per-Stream Filtering and Policing. IEEE: New York, NY, USA, 28 September 2017; pp. 1–65.
- IEEE Std 802.1Qcp-2018 (Amendment to IEEE Std 802.1Q-2018); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 30: YANG Data Model. IEEE: New York, NY, USA, 14 September 2018; pp. 1–93.
- IEEE Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Q-2018 as Amended by IEEE Std 802.1Qcp-2018, IEEE Std 802.1Qcc-2018, IEEE Std 802.1Qcy-2019, and IEEE Std 802.1Qcx-2020); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks—Amendment 34:Asynchronous Traffic Shaping. IEEE: New York, NY, USA, 6 November 2020; pp. 1–151. [CrossRef]
- IEEE Std 802.1Qcx-2020 (Amendment to IEEE Std 802.1Q-2018 as Amended by IEEE Std 802.1Qcp-2018, IEEE Std 802.1Qcc-2018, and IEEE Std 802.1Qcy-2019); IEEE Standard for Local and Metropolitan Area Networks—Bridges and Bridged Networks Amendment 33: YANG Data Model for Connectivity Fault Management. IEEE: New York, NY, USA, 5 October 2020; pp. 1–123. [CrossRef]
- P802.1Qcj–Automatic Attachment to Provider Backbone Bridging (PBB) Services. Available online: https://1.ieee802.org/tsn/802-1qcj/ (accessed on 11 February 2022).
- P802.1Qcw–YANG Data Models for Scheduled Traffic, Frame Preemption, and Per-Stream Filtering and Policing. Available online: https://1.ieee802.org/tsn/802-1qcw/ (accessed on 11 February 2022).
- P802.1Qcz–Congestion Isolation. Available online: https://1.ieee802.org/tsn/802-1qcz/ (accessed on 11 February 2022).
- P802.1Qdd–Resource Allocation Protocol. Available online: https://1.ieee802.org/tsn/802-1qdd/ (accessed on 11 February 2022).
- P802.1Qdj–Configuration Enhancements for Time-Sensitive Networking. Available online: https://1.ieee802.org/tsn/802-1qdj/ (accessed on 11 February 2022).
- ISO/IEC/IEEE 8802-3:2017/Amd.5:2017(E); ISO/IEC/IEEE International Standard-Amendment 5: Specification and Management Parameters for Interspersing Express Traffic. IEEE: New York, NY, USA, 16 March 2018; pp. 1–62.
- Zhou, Z.; Shou, G. An Efficient Configuration Scheme of OPC UA TSN in Industrial Internet. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1548–1551. [Google Scholar]
- Pop, P.; Raagaard, M.L.; Gutierrez, M.; Steiner, W. Enabling Fog Computing for Industrial Automation Through Time-Sensitive Networking (TSN). IEEE Commun. Stand. Mag. 2018, 2, 55–61. [Google Scholar] [CrossRef]
- Böhm, M.; Ohms, J.; Wermser, D. Multi-Domain Time-Sensitive Networks—An East-Westbound Protocol for Dynamic TSN-Stream Configuration Across Domains. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1363–1366. [Google Scholar]
- Gutiérrez, M.; Ademaj, A.; Steiner, W.; Dobrin, R.; Punnekkat, S. Self-configuration of IEEE 802.1 TSN networks. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar]
- Bülbül, N.S.; Ergenç, D.; Fischer, M. SDN-Based Self-Configuration for Time-Sensitive IoT Networks. arXiv 2021, arXiv:2103.01282. [Google Scholar]
- Garbugli, A.; Bujari, A.; Bellavista, P. End-to-End QoS Management in Self-Configuring TSN Networks. In Proceedings of the 2021 17th IEEE International Conference on Factory Communication Systems (WFCS), Linz, Austria, 9–11 June 2021; pp. 131–134. [Google Scholar] [CrossRef]
- Anwar, F.; D’Souza, S.; Symington, A.; Dongare, A.; Rajkumar, R.; Rowe, A.; Srivastava, M. Timeline: An Operating System Abstraction for Time-Aware Applications. In Proceedings of the 2016 IEEE Real-Time Systems Symposium (RTSS), Porto, Portugal, 29 November–2 December 2016; pp. 191–202. [Google Scholar]
- Skiadopoulos, K.; Tsipis, A.; Giannakis, K.; Koufoudakis, G.; Christopoulou, E.; Oikonomou, K.; Kormentzas, G.; Stavrakakis, I. Synchronization of data measurements in wireless sensor networks for IoT applications. Ad Hoc Netw. 2019, 89, 47–57. [Google Scholar] [CrossRef]
- IEEE Std 1588-2019 (Revision ofIEEE Std 1588-2008); IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE: New York, NY, USA, 16 June 2020; pp. 1–499. [CrossRef]
- Stanton, K.B. Distributing Deterministic, Accurate Time for Tightly Coordinated Network and Software Applications: IEEE 802.1AS, the TSN profile of PTP. IEEE Commun. Stand. Mag. 2018, 2, 34–40. [Google Scholar] [CrossRef]
- IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998); IEEE Standard for Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges. IEEE: New York, NY, USA, 9 June 2004; pp. 1–281.
- Pallos, R.; Farkas, J.; Moldovan, I.; Lukovszki, C. Performance of rapid spanning tree protocol in access and metro networks. In Proceedings of the 2007 Second International Conference on Access Networks Workshops, Ottawa, ON, Canada, 22–24 August 2007; pp. 1–8. [Google Scholar]
- Gutiérrez, M.; Steiner, W.; Dobrin, R.; Punnekkat, S. Synchronization Quality of IEEE 802.1AS in Large-Scale Industrial Automation Networks. In Proceedings of the 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Pittsburgh, PA, USA, 18–21 April 2017; pp. 273–282. [Google Scholar]
- Garner, G.M.; Gelter, A.; Teener, M.J. New simulation and test results for IEEE 802.1AS timing performance. In Proceedings of the 2009 International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, Brescia, Italy, 12–16 October 2009; pp. 1–7. [Google Scholar]
- Garner, G.M.; Ryu, H. Synchronization of audio/video bridging networks using IEEE 802.1AS. IEEE Commun. Mag. 2011, 49, 140–147. [Google Scholar] [CrossRef]
- Mohammadpour, E.; Stai, E.; Mohiuddin, M.; Le Boudec, J. Latency and Backlog Bounds in Time-Sensitive Networking with Credit Based Shapers and Asynchronous Traffic Shaping. In Proceedings of the 2018 30th International Teletraffic Congress (ITC 30), Vienna, Austria, 3–7 September 2018; Volume 2, pp. 1–6. [Google Scholar]
- IEEE Std 802.3br-2016 (Amendment to IEEE Std 802.3-2015 as Amended by IEEE St802.3bw-2015, IEEE Std 802.3by-2016, IEEE Std 802.3bq-2016, and IEEE Std 802.3bp-2016); IEEE Standard for Ethernet Amendment 5: Specification and Management Parameters for Interspersing Express Traffic. IEEE: New York, NY, USA, 14 October 2016; pp. 1–58.
- IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015); IEEE Standard for Ethernet. IEEE: New York, NY, USA, 31 August 2018; pp. 1–5600.
- Hellmanns, D.; Falk, J.; Glavackij, A.; Hummen, R.; Kehrer, S.; Dürr, F. On the Performance of Stream-Based, Class-Based Time-Aware Shaping and Frame Preemption in TSN. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 298–303. [Google Scholar] [CrossRef]
- Lee, J.; Park, S. Time-Sensitive Network (TSN) Experiment in Sensor-Based Integrated Environment for Autonomous Driving. Sensors 2019, 19, 1111. [Google Scholar] [CrossRef] [Green Version]
- Ojewale, M.A.; Yomsi, P.M.; Nikolić, B. Worst-Case Traversal Time Analysis of TSN with Multi-Level Preemption. J. Syst. Archit. 2021, 116, 102079. [Google Scholar] [CrossRef]
- Zhao, L.; Pop, P.; Zheng, Z.; Daigmorte, H.; Boyer, M. Latency Analysis of Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior Using Network Calculus. IEEE Trans. Ind. Electron. 2020, 68, 10291–10302. [Google Scholar] [CrossRef]
- Zhou, Z.; Yan, Y.; Ruepp, S.; Berger, M. Analysis and Implementation of Packet Preemption for Time Sensitive Networks. In Proceedings of the 2017 IEEE 18th International Conference on High Performance Switching and Routing (HPSR), Campinas, Brazil, 18–21 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Houtan, B.; Ashjaei, M.; Daneshtalab, M.; Sjödin, M.; Mubeen, S. Work in Progress: Investigating the Effects of High Priority Traffic on the Best Effort Traffic in TSN Networks. In Proceedings of the 2019 IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, 3–6 December 2019; pp. 556–559. [Google Scholar]
- Steiner, W.; Craciunas, S.S.; Oliver, R.S. Traffic Planning for Time-Sensitive Communication. IEEE Commun. Stand. Mag. 2018, 2, 42–47. [Google Scholar] [CrossRef]
- Craciunas, S.S.; Oliver, R.S.; Steiner, W. Formal Scheduling Constraints for Time-Sensitive Networks. arXiv 2017, arXiv:1712.02246. [Google Scholar]
- Jiang, J.; Li, Y.; Hong, S.H.; Xu, A.; Wang, K. A Time-sensitive Networking (TSN) Simulation Model Based on OMNET++. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 643–648. [Google Scholar]
- Kehrer, S.; Kleineberg, O.; Heffernan, D. A comparison of fault-tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN). In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–8. [Google Scholar]
- ISO/IEC/IEEE 8802-1AC-2018(E); ISO/IEC/IEEE International Standard-Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Part 1AC: Media Access Control (MAC) Service Definition. IEEE: New York, NY, USA, 30 April 2018; pp. 1–56.
- Desai, N.; Punnekkat, S. Enhancing Fault Detection in Time Sensitive Networks using Machine Learning. In Proceedings of the 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), Bangalore, India, 7–11 January 2020; pp. 714–719. [Google Scholar]
- Hofmann, R.; Nikolić, B.; Ernst, R. Challenges and Limitations of IEEE 802.1CB-2017. IEEE Embed. Syst. Lett. 2019, 12, 105–108. [Google Scholar] [CrossRef]
- Prinz, F.; Schoeffler, M.; Lechler, A.; Verl, A. End-to-end Redundancy between Real-time I4.0 Components based on Time-Sensitive Networking. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Torino, Italy, 4–7 September 2018; Volume 1, pp. 1083–1086. [Google Scholar]
- IEEE Std 802.1BA-2021 (Revision of IEEE Std 802.1BA-2011); IEEE Standard for Local and Metropolitan Area Networks—Audio Video Bridging (AVB) Systems. IEEE: New York, NY, USA, 17 December 2021; pp. 1–45. [CrossRef]
- IEEE Std 802.1CM-2018; IEEE Standard for Local and Metropolitan Area Networks—Time-Sensitive Networking for Fronthaul. IEEE: New York, NY, USA, 8 June 2018; pp. 1–62.
- IEC/IEEE 60802 TSN Profile for Industrial Automation-WG Website. 2021. Available online: https://1.ieee802.org/tsn/iec-ieee-60802/ (accessed on 11 February 2022).
- P802.1DF—TSN Profile for Service Provider Networks. Available online: https://1.ieee802.org/tsn/802-1df/ (accessed on 11 February 2022).
- P802.1DG—TSN Profile for Automotive In-Vehicle Ethernet Communications, Draft 1.4. 2021. Available online: https://1.ieee802.org/tsn/802-1dg/ (accessed on 11 February 2022).
- P802.1DP—TSN for Aerospace Onboard Ethernet Communications. Available online: https://1.ieee802.org/tsn/802-1dp/ (accessed on 11 February 2022).
- Use Cases IEC/IEEE 60802 (V1.3). Available online: http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf (accessed on 11 February 2022).
- Tramarin, F.; Vitturi, S. Strategies and Services for Energy Efficiency in Real-Time Ethernet Networks. IEEE Trans. Ind. Inform. 2015, 11, 841–852. [Google Scholar] [CrossRef]
- Lupashin, S.; Schöllig, A.; Sherback, M.; D’Andrea, R. A simple learning strategy for high-speed quadrocopter multi-flips. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1642–1648. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Wang, F.; Peng, F.; Lin, S.C. Design of Distributed Network Clock-Synchronization for Swarm UAV. In Proceedings of the 2020 International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 1–2 August 2020; pp. 194–197. [Google Scholar] [CrossRef]
- Ahmadi, A.; Moradi, M.; Cherifi, C.; Cheutet, V.; Ouzrout, Y. Wireless Connectivity of CPS for Smart Manufacturing: A Survey. In Proceedings of the 2018 12th International Conference on Software, Knowledge, Information Management Applications (SKIMA), Phnom Penh, Cambodia, 3–5 December 2018; pp. 1–8. [Google Scholar]
- Park, P.; Coleri Ergen, S.; Fischione, C.; Lu, C.; Johansson, K.H. Wireless Network Design for Control Systems: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 978–1013. [Google Scholar] [CrossRef]
- Sudhakaran, S.; Montgomery, K.; Kashef, M.; Cavalcanti, D.; Candell, R. Wireless Time Sensitive Networking for Industrial Collaborative Robotic Workcells. In Proceedings of the 2021 17th IEEE International Conference on Factory Communication Systems (WFCS), Linz, Austria, 9–11 June 2021; pp. 91–94. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Bush, S.; Illouz, M.; Kronauer, G.; Regev, A.; Venkatesan, G. Wireless TSN–Definitions, Use Cases & Standards Roadmap. Avnu Alliance 2020, 1–16. [Google Scholar]
- Song, J.; Han, S.; Mok, A.; Chen, D.; Lucas, M.; Nixon, M.; Pratt, W. WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control. In Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applications Symposium, St. Louis, MO, USA, 22–24 April 2008; pp. 377–386. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Hu, X.S.; Gong, T.; Han, S. On-Line Data Link Layer Scheduling in Wireless Networked Control Systems. In Proceedings of the 2015 27th Euromicro Conference on Real-Time Systems, Lund, Sweden, 8–10 July 2015; pp. 57–66. [Google Scholar] [CrossRef]
- Luvisotto, M.; Tramarin, F.; Vitturi, S. A learning algorithm for rate selection in real-time wireless LANs. Comput. Netw. 2017, 126, 114–124. [Google Scholar] [CrossRef]
- Branz, F.; Pezzutto, M.; Antonello, R.; Tramarin, F.; Schenato, L. Drive-by-Wi-Fi: Testing 1 kHz control experiments over wireless. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 2990–2995. [Google Scholar]
- Fedullo, T.; Tramarin, F.; Vitturi, S. The Impact of Rate Adaptation Algorithms on Wi-Fi-Based Factory Automation Systems. Sensors 2020, 20, 5195. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A Survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Maldonado, R.; Karstensen, A.; Pocovi, G.; Esswie, A.A.; Rosa, C.; Alanen, O.; Kasslin, M.; Kolding, T. Comparing Wi-Fi 6 and 5G Downlink Performance for Industrial IoT. IEEE Access 2021, 9, 86928–86937. [Google Scholar] [CrossRef]
- Wijethilaka, S.; Liyanage, M. Survey on Network Slicing for Internet of Things Realization in 5G Networks. IEEE Commun. Surv. Tutor. 2021, 23, 957–994. [Google Scholar] [CrossRef]
- Fedullo, T.; Morato, A.; Tramarin, F.; Bellagente, P.; Ferrari, P.; Sisinni, E. Adaptive LoRaWAN Transmission exploiting Reinforcement Learning: The Industrial Case. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 IoT (MetroInd4.0 IoT), Rome, Italy, 7–9 June 2021; pp. 671–676. [Google Scholar] [CrossRef]
- Neumann, A.; Wisniewski, L.; Ganesan, R.S.; Rost, P.; Jasperneite, J. Towards integration of Industrial Ethernet with 5G mobile networks. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–4. [Google Scholar]
- IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016); IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE: New York, NY, USA, 26 February 2021; pp. 1–4379. [CrossRef]
ISO/OSI Layer | IEEE 802 Standard | |
---|---|---|
Data Link Layer | 802.2 Logical Link Layer | |
802.1 Bridging | ||
802.3 MAC | 802.11 MAC | |
Physical | 802.3 PHY | 802.11 PHY |
Standard | Description | Reference |
---|---|---|
IEEE 802.1AB | Station and Media Access Control Connectivity Discovery | [55] |
IEEE 802.1AS | Timings & Syncronization | [56] |
IEEE 802.1AX | Link Aggregation | [57] |
IEEE 802.1CB | Frame Replication & Elimination | [58] |
IEEE 802.1CS | Link Local Registration Protocol | [59] |
Ongoing Projects | ||
IEEE P802.1CQ | Multicast and Local Address Assignment | [60] |
IEEE P802.1DC | Quality of Service Provision by Network Systems | [61] |
IEEE P802f | YANG Data Model for EtherTypes (amending IEEE 802-2014 [62]) | [63] |
IEEE P802.1ABcu | LLDP YANG Data Model (amending IEEE 802.1AB [55]) | [64] |
IEEE P802.1ABdh | Support for Multiframe PDUs (amending IEEE 802.1AB [55]) | [65] |
IEEE P802.1ASdm | Hot Standby (amending IEEE 802.1AS [56]) | [66] |
IEEE P802.1ASdn | YANG Data Model (amending IEEE 802.1AS [56]) | [67] |
IEEE P802.1CBcv | FRER YANG Data Model (amending IEEE 802.1CB [58]) | [68] |
IEEE P802.1CBdb | FRER Extended Stream Identification Funs (amending IEEE 802.1CB [58]) | [69] |
Amendments to the IEEE 802.1Q standard | ||
Amendment | Description | Reference |
802.1Qat | Stream Reservation Protocol (SRP) | [70] |
802.1Qav | Credit based Shaper | [71] |
802.1Qaz | Stream Resv. Pot. | [72] |
802.1Qbu | Frame Preemption | [73] |
802.1Qbv | Enhancements for Scheduled Traffic | [74] |
802.1Qca | Path Control | [75] |
802.1Qcc | TSN Configuration | [76] |
802.1Qch | Cyclic Queuing | [77] |
802.1Qci | Per–stream Filtering | [78] |
802.1Qcp | Yang Data Model | [79] |
802.1Qcr | Asynchronous Shaping | [80] |
802.1Qcx | YANG Data Model for Connectivity Fault Management | [81] |
Ongoing Projects | ||
P802.1Qcj | Automatic Attachment to Provider Backbone Bridging (PBB) services | [82] |
P802.1Qcw | YANG Data Models | [83] |
P802.1Qcz | Congestion Isolation | [84] |
P802.1Qdd | Resource Allocation Protocol | [85] |
P802.1Qdj | Configuration Enhancements for Time-Sensitive Networking | [86] |
Amendments to the IEEE 802.3 standard | ||
Amendment | Description | Reference |
802.3br | Interspersing Express Traffic | [87] |
Description | Standard | Reference |
---|---|---|
Audio Video Bridging (AVB) systems | IEEE Std 802.1BA | [120] |
Time-Sensitive Networking for Fronthaul | IEEE 802.1CM | [121] |
Ongoing Projects | ||
Industrial Automation | IEEE/IEC 60802 | [122] |
TSN Profile for Service Provider Networks | IEEE P802.1DF | [123] |
TSN Profile for Automotive | IEEE P802.1 DG | [124] |
TSN for Aerospace Onboard Ethernet Communications | IEEE P802.1 DP | [125] |
Traffic Typology | Characteristics | |||||
---|---|---|---|---|---|---|
Periodic | Sporadic | Deadline | Bandwidth | Bounded Latency | Priority | |
Isochronous cyclic real-time | X | X | X | X | ||
Cyclic real-time | X | X | X | X | ||
Network Control | X | X | ||||
Audio/Video | X | X | X | |||
Brownfield | X | X | X | |||
Alarms/Events | X | X | X | |||
Configuration/Diagnostic | X | X | ||||
Internal/pass-through | X | X | ||||
Best-Effort | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedullo, T.; Morato, A.; Tramarin, F.; Rovati, L.; Vitturi, S. A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems. Sensors 2022, 22, 1638. https://doi.org/10.3390/s22041638
Fedullo T, Morato A, Tramarin F, Rovati L, Vitturi S. A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems. Sensors. 2022; 22(4):1638. https://doi.org/10.3390/s22041638
Chicago/Turabian StyleFedullo, Tommaso, Alberto Morato, Federico Tramarin, Luigi Rovati, and Stefano Vitturi. 2022. "A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems" Sensors 22, no. 4: 1638. https://doi.org/10.3390/s22041638
APA StyleFedullo, T., Morato, A., Tramarin, F., Rovati, L., & Vitturi, S. (2022). A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems. Sensors, 22(4), 1638. https://doi.org/10.3390/s22041638