UHF RFID Temperature Sensor Tag Integrated into a Textile Yarn
Abstract
:1. Introduction
2. Presentation of the RFID Yarn Including a Temperature Sensor
2.1. Principle of the Integration of the Sensing Capability in the RFID Yarn
2.2. Theoretical Concept of the Sensing Capability
3. Design and Characterization in Simulation of the RFID Yarn Including a Temperature Sensing
3.1. Geometric Sizing and Parameterization
3.2. Impact of a Temperature Variation on the Impedance Matching of the RFID Tag
4. Experimental Evaluation of the RFID Yarn Including a Temperature Sensor
4.1. Fabricated RFID Temperature Sensor Tag Yarn
4.2. Temperature Measurement without Environmental Calibration: A Differential Approach
4.3. Experimental Setup
5. Measurement Results and Discussion
5.1. Impact of the Temperature Change on the Transmitted Differential Activation Power
5.2. Impact of the Temperature Change on the Read Range
5.3. Analysis of the Temperature RFID Sensor Integrated in a Textile Yarn and Comparison with the Existing Solutions Presented by the Literature
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Athauda, T.; Karmakar, N. Chipped versus chipless RF identification: A comprehensive review. IEEE Microw. Mag. 2019, 20, 47–57. [Google Scholar] [CrossRef]
- Aiswarya, S.; Menon, S.K.; Donelli, M. Development of enhanced range, high Q, passive, chipless RFID tags for continuous monitoring and sensing applications. Electronics 2022, 11, 127. [Google Scholar]
- Marchi, G.; Mulloni, V.; Hammad Ali, O.; Lorenzelli, L.; Donelli, M. Improving the sensitivity of chipless RFID sensors: The case of a low-humidity sensor. Electronics 2021, 10, 2861. [Google Scholar] [CrossRef]
- Corchia, L.; Monti, G.; De Benedetto, E.; Cataldo, A.; Angrisani, L.; Arpaia, P.; Tarricone, L. Fully-textile, wearable chipless tags for identification and tracking applications. Sensors 2020, 20, 429. [Google Scholar] [CrossRef] [Green Version]
- Barbot, N.; Rance, O.; Perret, E. Classical RFID versus chipless RFID read range: Is linearity a friend or a foe? IEEE Trans. Microw. Theory Tech. 2021, 69, 4199–4208. [Google Scholar] [CrossRef]
- Zannas, K.; El Matbouly, H.; Duroc, Y.; Tedjini, S. Augmented RFID Tags: From Identification to Sensing. 2020. Available online: https://hal.archives-ouvertes.fr/hal-03389481/ (accessed on 25 April 2021).
- Ams. SL900A EPC Gen2 Sensor Tag. Available online: https://ams.com/SL900A (accessed on 25 April 2021).
- Virtanen, J.; Ukkonen, L.; Björninen, T.; Sydänheimo, L. Printed humidity sensor for UHF RFID systems. In Proceedings of the IEEE Sensors Applications Symposium (SAS), Limerick, Ireland, 23–25 February 2010. [Google Scholar]
- Trangkanukulkij, R.; Kim, T.; Kim, W.S. A 3D printed flexible passive RFID for temperature sensing. In Proceedings of the International Flexible Electronics Technology Conference (IFETC), Ottawa, ON, Canada, 7–9 August 2018. [Google Scholar]
- Baumbauer, C.L.; Anderson, M.G.; Ting, J.; Sreekumar, A.; Rabaey, J.M.; Arias, A.C.; Thielens, A. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Sci. Rep. 2020, 10, 16543. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.; Ukkonen, L.; Bjorninen, T.; Elsherbeni, A.Z.; Sydänheimo, L. Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans. Instrum. Meas. 2011, 60, 2768–2777. [Google Scholar] [CrossRef]
- Chen, X.; He, H.; Ukkonen, L.; Virkki, J. Embroidered UHF RFID moisture sensor tag on dishcloth substrate. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018. [Google Scholar]
- Andia, G. Slenderly and Conformable Passive UHF RFID Yarn. In Proceedings of the IEEE International Conference on RFID, Phoenix, AZ, USA, 9–11 May 2017. [Google Scholar]
- Vicard, D.; Brun, J. Cap for a Chip Device Having a Groove, Device Provided with Said Cap, Assembly Consisting of the Device and a Wire Element, and Manufacturing Method Thereof. U.S. Patent EP2896067B1, 1 February 2017. [Google Scholar]
- Benouakta, S.; Hutu, H.; Duroc, D. Passive UHF RFID yarn for temperature sensing applications. In Proceedings of the IEEE International Conference on RFID Technology and Application (RFID-TA), Delhi, India, 6–8 October 2021. [Google Scholar]
- Impinj. Monza 6 Product Brief. Available online: https://sensorplaza.nl/wp-content/uploads/2017/06/Monza-R6P-Datasheet.pdf (accessed on 15 March 2021).
- Merilampi, S.; He, H.; Sydänheimo, L.; Ukkonen, L.; Virkki, J. The possibilities of passive UHF RFID textile tags as comfortable wearable sweat rate sensors. In Proceedings of the Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016. [Google Scholar]
- Seshagiri Rao, K.V.; Nikitin, P.V.; Lam, S.F. Antenna design for UHF RFID tags: A review and a practical application. IEEE Trans. Antennas Propag. 2005, 53, 3870–3876. [Google Scholar]
- Tolles, H.T. How to design gamma-matching networks. Ham. Radio 1973, 46–55. Available online: https://www.nonstopsystems.com/radio/pdf-ant/article-antenna-gamma-match-HR73.pdf (accessed on 17 January 2022).
- Balanis, C.A. Antenna Theory Analysis and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- CST Microwave 3D Studio. Available online: https://www.3ds.com/fr/produits-et-services/simulia/produits/cst-studio-suite/ (accessed on 17 January 2022).
- Murata. NTC Thermistors. Available online: https://www.murata.com/en-eu/products/thermistor/ntc (accessed on 14 February 2021).
- Unnikrishnan, R.; Rance, O.; Barbot, N.; Perret, E. Chipless RFID label with identification and touch-sensing capabilities. Sensors 2021, 21, 4862. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kawahara, Y.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Low-cost inkjet-printed fully passive RFID tags for calibration-free capacitive/haptic sensor applications. IEEE Sens. J. 2015, 15, 3135–3145. [Google Scholar] [CrossRef]
- Nikitin, P.V.; Rao, K.V.S. Performance limitations of passive UHF RFID systems. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006. [Google Scholar]
- Voyantic. Tagformance Pro. Available online: https://voyantic.com/products/tagformance-pro (accessed on 2 February 2021).
- Colella, R.; Catarinucci, L. Wearable UHF RFID sensor tag in 3D-printing technology for body temperature monitoring. In Proceedings of the URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 28 May–1 June 2018. [Google Scholar]
Parameter | Dimension (mm) |
---|---|
Reference | Fabrication Method | Substrate | Sensing Principle | UHF Band |
---|---|---|---|---|
[10] | Screen printing | Plastic | RFID chip integrated sensor SL900A | |
[9] | 3D printing | Flexible polyimide | RFID chip integrated sensor SL900A | |
[27] | 3D printing | Polylactic | RFID chip integrated sensor EM4325 | |
Current work | E-Thread® | No substrate | Tag properties (impedance matching) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benouakta, S.; Hutu, F.D.; Duroc, Y. UHF RFID Temperature Sensor Tag Integrated into a Textile Yarn. Sensors 2022, 22, 818. https://doi.org/10.3390/s22030818
Benouakta S, Hutu FD, Duroc Y. UHF RFID Temperature Sensor Tag Integrated into a Textile Yarn. Sensors. 2022; 22(3):818. https://doi.org/10.3390/s22030818
Chicago/Turabian StyleBenouakta, Sofia, Florin Doru Hutu, and Yvan Duroc. 2022. "UHF RFID Temperature Sensor Tag Integrated into a Textile Yarn" Sensors 22, no. 3: 818. https://doi.org/10.3390/s22030818
APA StyleBenouakta, S., Hutu, F. D., & Duroc, Y. (2022). UHF RFID Temperature Sensor Tag Integrated into a Textile Yarn. Sensors, 22(3), 818. https://doi.org/10.3390/s22030818