W-Band Photonic Receiver for Compact Cloud Radars
Abstract
:1. Introduction
2. Concept of Operation
3. Theoretical Performance Model
- Find a pump (TE) mode nearest to the nominal pump wavelength nm at the nominal resonator temperature C. This mode has a frequency which is no further from the nominal pump frequency than the resonator free spectral range (FSR). We assume that it can be accessed with a minimal tuning of the laser wavelength.
- Find a signal (TM) mode nearest to the target frequency . Determine this mode’s frequency .
- Evaluate the RF frequency detuning of the found modes from the target RF signal frequency . Keep the solution if the detuning falls into a specified frequency range which is deemed accessible.
4. Receiver Sensitivity
5. RF Simulations and Results
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SWaP | Size Weight and Power |
TRMM | Tropical Rainfall Measuring Mission |
GPM | Globabl Precipitation Measurement |
WGM | Whispering Gallery Mode |
RF | Radio Frequency |
TE | Transverse Electric |
TM | Transverse Magnetic |
HFSS | High Frequency Structure Solver |
PEC | Perfect Electric Conductor |
FSR | Free Spectral Range |
SNR | Signal to Noise Ratio |
LO | Local Oscillator |
References
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The Cloudsat Mission and the a-Train: A New Dimension of Space-Based Observations of Clouds and Precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Tanelli, S.; Durden, S.L.; Im, E.; Pak, K.S.; Reinke, D.G.; Partain, P.; Haynes, J.M.; Marchand, R.T. CloudSat’s Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3560–3573. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Tanelli, S.; Haddad, Z.S.; Im, E.; Durden, S.L.; Sy, O.O.; Peral, E.; Sadowy, G.A.; Sanchez-Barbetty, M. Radar concepts for the next generation of spacebome observations of cloud and precipitation processes. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1245–1249. [Google Scholar] [CrossRef]
- Ilchenko, V.S.; Savchenkov, A.A.; Matsko, A.B.; Maleki, L. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. JOSA B 2003, 20, 333–341. [Google Scholar] [CrossRef]
- Ilchenko, V.; Matsko, A.; Solomatine, I.; Savchenkov, A.; Seidel, D.; Maleki, L. Ka Band All-Resonant Photonic Microwave Receiver. Phot. Technol. Lett. 2008, 20, 1600–1612. [Google Scholar] [CrossRef]
- Matsko, A.B.; Strekalov, D.V.; Yu, N. Sensitivity of terahertz photonic receivers. Phys. Rev. A 2008, 77, 043812. [Google Scholar] [CrossRef]
- Strekalov, D.V.; Savchenkov, A.A.; Matsko, A.B.; Yu, N. Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator. Opt. Lett. 2009, 34, 713–715. [Google Scholar] [CrossRef] [Green Version]
- Strekalov, D.V.; Schwefel, H.G.L.; Savchenkov, A.A.; Matsko, A.B.; Wang, L.J.; Yu, N. Microwave whispering-gallery resonator for efficient optical up-conversion. Phys. Rev. A 2009, 80, 033810. [Google Scholar] [CrossRef] [Green Version]
- Savchenkov, A.A.; Liang, W.; Matsko, A.B.; Ilchenko, V.S.; Seidel, D.; Maleki, L. Tunable optical single-sideband modulator with complete sideband suppression. Opt. Lett. 2009, 34, 1300–1302. [Google Scholar] [CrossRef]
- Matsko, A.B.; Savchenkov, A.A.; Ilchenko, V.S.; Seidel, D.; Maleki, L. On the Sensitivity of All-Dielectric Microwave Photonic Receivers. J. Light. Technol. 2010, 28, 3427–3438. [Google Scholar] [CrossRef]
- Savchenkov, A.A.; Ilchenko, V.S.; Liang, W.; Eliyahu, D.; Matsko, A.B.; Seidel, D.; Maleki, L. Voltage-controlled photonic oscillator. Opt. Lett. 2010, 35, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Savchenkov, A.A.; Liang, W.; Ilchenko, V.S.; Dale, E.; Savchenkova, E.A.; Matsko, A.B.; Seidel, D.; Maleki, L. Photonic E-field sensor. AIP Adv. 2014, 4, 122901. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R.W.; Peterson, R.W.; Purdy, T.P.; Cicak, K.; Simmonds, R.W.; Regal, C.A.; Lehnert, K.W. Bidirectional and Efficient Conversion between Microwave and Optical Light. Nat. Phys. 2014, 10, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Rueda, A.; Sedlmeir, F.; Collodo, M.C.; Vogl, U.; Stiller, B.; Schunk, G.; Strekalov, D.V.; Marquardt, C.; Fink, J.M.; Painter, O.; et al. Efficient microwave to optical photon conversion: An electro-optical realization. Optica 2016, 3, 597–604. [Google Scholar] [CrossRef]
- Santamaría Botello, G.; Sedlmeir, F.; Rueda, A.; Abdalmalak, K.A.; Brown, E.R.; Leuchs, G.; Preu, S.; Segovia-Vargas, D.; Strekalov, D.V.; García Muñoz, L.E.; et al. Sensitivity Limits of Millimeter-Wave Photonic Radiometers Based on Efficient Electro-Optic Upconverters. Optica 2018, 5, 12101219. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, X.; Zhang, X.; Han, X.; Han, X.; Zou, C.L.; Zou, C.L.; Zhong, C.; Zhong, C.; Wang, C.H.; et al. Waveguide Cavity Optomagnonics for Microwave-to-Optics Conversion. Optica 2020, 7, 1291–1297. [Google Scholar] [CrossRef]
- Forsch, M.; Stockill, R.; Wallucks, A.; Marinković, I.; Gärtner, C.; Norte, R.A.; van Otten, F.; Fiore, A.; Srinivasan, K.; Gröblacher, S. Microwave-to-Optics Conversion Using a Mechanical Oscillator in Its Quantum Ground State. Nat. Phys. 2020, 16, 69–74. [Google Scholar] [CrossRef]
- Hease, W.; Rueda, A.; Sahu, R.; Wulf, M.; Arnold, G.; Schwefel, H.G.; Fink, J.M. Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State. PRX Quantum 2020, 1, 020315. [Google Scholar] [CrossRef]
- Santamaría-Botello, G.; Popovic, Z.; Abdalmalak, K.A.; Segovia-Vargas, D.; Brown, E.R.; García Muñoz, L.E. Sensitivity and Noise in THz Electro-Optic Upconversion Radiometers. Sci. Rep. 2020, 10, 9403. [Google Scholar] [CrossRef]
- Xu, Y.; Sayem, A.A.; Fan, L.; Zou, C.L.; Wang, S.; Cheng, R.; Fu, W.; Yang, L.; Xu, M.; Tang, H.X. Bidirectional Interconversion of Microwave and Light with Thin-Film Lithium Niobate. Nat. Commun. 2021, 12, 4453. [Google Scholar] [CrossRef]
- Ilchenko, V.S.; Yao, X.S.; Maleki, L. Microsphere integration in active and passive photonics devices. Proc. SPIE 2000, 3930, 154–162. [Google Scholar]
- Ilchenko, V.S.; Maleki, L. Novel whispering-gallery resonators for lasers, modulators, and sensors. Proc. SPIE 2001, 4270, 120–130. [Google Scholar]
- Cohen, D.A.; Levi, A.F.J. Microphotonic millimetre-wave receiver architecture. Electron. Lett. 2001, 37, 37–39. [Google Scholar] [CrossRef]
- Cohen, D.A.; Hossein-Zadeh, M.; Levi, A.F.J. Microphotonic modulator for microwave receiver. Electron. Lett. 2001, 37, 300–301. [Google Scholar] [CrossRef]
- Cohen, D.A.; Levi, A.F.J. Microphotonic components for a mm-wave receiver. Solid-State Electron. 2001, 45, 495–505. [Google Scholar] [CrossRef]
- Cohen, D.A.; Hossein-Zadeh, M.; Levi, A.F.J. High-Q microphotonic electro-optic modulator. Solid-State Electron. 2001, 45, 1577–1589. [Google Scholar] [CrossRef]
- Ilchenko, V.; Savchenkov, A.; Matsko, A.; Maleki, L. Sub-microwatt photonic microwave receiver. Phot. Technol. Lett. 2002, 14, 1602–1604. [Google Scholar] [CrossRef]
- Hossein-Zadeh, M.; Levi, A. Self-homodyne RF-optical LiNbO3 microdisk receiver. Solid-State Electron. 2005, 49, 1428–1434. [Google Scholar] [CrossRef]
- Hossein-Zadeh, M.; Levi, A. 14.6-GHz LiNbO3 microdisk photonic self-homodyne RF receiver. Microw. Theory Technol. IEEE Trans. 2006, 54, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Gordon, E.I.; Rigden, J.D. The Fabry-Perot Electrooptic Modulator. Bell Syst. Tech. J. 1963, 42, 155–179. [Google Scholar] [CrossRef]
- Alferness, R. Waveguide Electrooptic Modulators. Microw. Theory Tech. IEEE Trans. 1982, 30, 1121–1137. [Google Scholar] [CrossRef]
- Ho, K.P.; Kahn, J. Optical frequency comb generator using phase modulation in amplified circulating loop. Phot. Technol. Lett. 1993, 5, 721–725. [Google Scholar] [CrossRef]
- Kawanishi, T.; Oikawa, S.; Higuma, K.; Matsuo, Y.; Izutsu, M. LiNbO3 resonant-type optical modulator with double-stub structure. Electron. Lett. 2001, 37, 1244–1246. [Google Scholar] [CrossRef]
- Gheorma, I.L.; Osgood, R.M. Fundamental limitations of optical resonator based high-speed EO modulators. Phot. Technol. Lett. 2002, 14, 795–797. [Google Scholar] [CrossRef]
- Kato, M.; Fujiura, K.; Kurihara, T. Generation of super-stable 40 GHz pulses from Fabry-Perot resonator integrated with electro-optic phase modulator. Electron. Lett. 2004, 40, 299–301. [Google Scholar] [CrossRef]
- Benter, N.; Bertram, R.P.; Soergel, E.; Buse, K.; Apitz, D.; Jacobsen, L.B.; Johansen, P.M. Large-area Fabry–Perot modulator based on electro-optic polymers. Appl. Opt. 2005, 44, 6235–6239. [Google Scholar] [CrossRef]
- Kato, M.; Fujiura, K.; Kurihara, T. Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry–Perot resonator integrated with an electro-optic phase modulator. Appl. Opt. 2005, 44, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, P.; Steier, W.H.; Zhang, C.; Dalton, L.R. Polymer Micro-Ring Filters and Modulators. J. Light. Technol. 2002, 20, 1968. [Google Scholar] [CrossRef]
- Weldon, M.; Hum, S.; Davies, R.; Okoniewski, M. Traveling-wave ring circuit for resonant enhancement of electrooptic modulators. Phot. Technol. Lett. 2004, 16, 1295–1297. [Google Scholar] [CrossRef]
- Tazawa, H.; Steier, W. Linearity of ring resonator-based electro-optic polymer modulator. Electron. Lett. 2005, 41, 1297–1298. [Google Scholar] [CrossRef]
- Tazawa, H.; Steier, W.H. Analysis of ring resonator-based traveling-wave modulators. Photonics Technol. Lett. 2006, 18, 211–213. [Google Scholar] [CrossRef]
- Tazawa, H.; Kuo, Y.H.; Dunayevskiy, I.; Luo, J.; Jen, A.K.Y.; Fetterman, H.R.; Steier, W.H. Ring Resonator-Based Electrooptic Polymer Traveling-Wave Modulator. J. Light. Technol. 2006, 24, 3514–3519. [Google Scholar] [CrossRef]
- Bortnik, B.; Hung, Y.C.; Tazawa, H.; Seo, B.J.; Luo, J.; Jen, A.K.Y.; Steier, W.H.; Fetterman, H.R. Electrooptic Polymer Ring Resonator Modulation up to 165 GHz. J. Sel. Top. Quantum Electron. 2007, 13, 104–110. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: New York, NY, USA, 2003. [Google Scholar]
- Breunig, I.; Sturman, B.; Sedlmeir, F.; Schwefel, H.G.L.; Buse, K. Whispering gallery modes at the rim of an axisymmetric optical resonator: Analytical versus numerical description and comparison with experiment. Opt. Express 2013, 21, 30683–30692. [Google Scholar] [CrossRef]
- Demchenko, Y.A.; Gorodetsky, M.L. Analytical estimates of eigenfrequencies, dispersion, and field distribution in whispering gallery resonators. JOSA B 2013, 30, 3056–3063. [Google Scholar] [CrossRef]
- Abedin, K.S.; Ito, H. Temperature-dependent Dispersion Relation of Ferroelectric Lithium Tantalate. J. Appl. Phys. 1996, 80, 6561–6563. [Google Scholar] [CrossRef]
- Lim, H.H.; Kurimura, S.; Katagai, T.; Shoji, I. Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0 Mol % Mg-Doped Stoichiometric Lithium Tantalate. Jpn. J. Appl. Phys. 2013, 52, 032601. [Google Scholar] [CrossRef]
- Basilio, R.R.; Im, E.; Rokey, M.J.; Vane, D.G. A spaceborne microwave radar system for looking inside clouds. In Proceedings of the Sensors, Systems, and Next-Generation Satellites X, Stockholm, Sweden, 11–14 September 2006; Volume 6361, p. 63610D. [Google Scholar]
- Ewald, F.; Groß, S.; Hagen, M.; Hirsch, L.; Delanoë, J.; Bauer-Pfundstein, M. Calibration of a 35 GHz airborne cloud radar: Lessons learned and intercomparisons with 94 GHz cloud radars. Atmos. Meas. Tech. 2019, 12, 1815–1839. [Google Scholar] [CrossRef] [Green Version]
- Schermer, R.T.; Stievater, T.H. Millimeter-Wave Dielectric Properties of Highly Refractive Single Crystals Characterized by Waveguide Cavity Resonance. IEEE Trans. Microw. Theory Tech. 2019, 67, 1078–1087. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Units |
---|---|---|---|
Optical wavelength | 1558.6 | nm | |
Resonator radius | R | 490 | m |
Rim radius | r | 104 | m |
Ordinary refractive index | 2.1189 | ||
Extraordinary refractive index | 2.1231 | ||
Electro-optic coefficient | 20 | pm/V | |
TM coupling rate | rad/s | ||
TE coupling rate | rad/s | ||
Pump power | 10 | mW | |
LO power | 2 | mW | |
RF impedance | 50 | ||
Photodiode responsivity | 0.9 | A/W | |
Differential mode number | 7 | ||
Predicted Performance | Symbol | Value | Units |
Peak field value | 1800 | kV/m | |
RF coefficient | W(m/V) | ||
Coupling rate | g | 1/s | |
Normalized coupling rate | 2200 | m/(V s) | |
Photonic gain | G | 6.3 | |
Photon-number conversion efficiency | 0.019 | 1/mW | |
Shot noise contribution | W/Hz | ||
Thermal noise contribution | W/Hz | ||
Receiver Sensitivity | W/Hz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strekalov, D.; Majurec, N.; Matsko, A.; Ilchenko, V.; Tanelli, S.; Ahmed, R. W-Band Photonic Receiver for Compact Cloud Radars. Sensors 2022, 22, 804. https://doi.org/10.3390/s22030804
Strekalov D, Majurec N, Matsko A, Ilchenko V, Tanelli S, Ahmed R. W-Band Photonic Receiver for Compact Cloud Radars. Sensors. 2022; 22(3):804. https://doi.org/10.3390/s22030804
Chicago/Turabian StyleStrekalov, Dmitry, Ninoslav Majurec, Andrey Matsko, Vladimir Ilchenko, Simone Tanelli, and Razi Ahmed. 2022. "W-Band Photonic Receiver for Compact Cloud Radars" Sensors 22, no. 3: 804. https://doi.org/10.3390/s22030804
APA StyleStrekalov, D., Majurec, N., Matsko, A., Ilchenko, V., Tanelli, S., & Ahmed, R. (2022). W-Band Photonic Receiver for Compact Cloud Radars. Sensors, 22(3), 804. https://doi.org/10.3390/s22030804