# Moment-Based Parameter Estimation for the Γ-Parameterized TWDP Model

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Works

## 3. Moment-Based Estimators for the $\Gamma $-Parameterized TWDP Model

#### Simulation-Based Performance Analysis of the $\Gamma $ Estimator

## 4. AsV and CRB

## 5. Comparison of Moment-Based Estimators for the $\Delta $- and $\Gamma $-Parameterized TWDP Model

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Dixit, D.; Sahu, P.R. Performance of QAM signaling over TWDP fading channels. IEEE Trans. Wirel. Commun.
**2013**, 12, 1794–1799. [Google Scholar] [CrossRef] - Lu, Y.; Yang, N. Symbol error probability of QAM with MRC diversity in two-wave with diffuse power fading channels. IEEE Commun. Lett.
**2011**, 15, 10–12. [Google Scholar] [CrossRef] - Frolik, J. A case for considering hyper-Rayleigh fading channels. IEEE Trans. Wirel. Commun.
**2007**, 6, 1235–1239. [Google Scholar] [CrossRef] - Lopez-Fernandez, J.; Moreno-Pozas, L.; Lopez-Martinez, F.J.; Martos-Naya, E. Joint Parameter Estimation for the Two-Wave with Diffuse Power Fading Model. Sensors
**2016**, 16, 1014. [Google Scholar] [CrossRef] [PubMed] - Singh, S.; Kansal, V. Performance of M-ary PSK over TWDP fading channels. Int. J. Electron. Lett.
**2016**, 4, 433–437. [Google Scholar] [CrossRef] - Rappaport, T.; Heath, R.; Daniels, R.; Murdock, J. Millimeter Wave Wireless Communications; Prentice Hall: Upper Saddle River, NJ, USA, 2015. [Google Scholar]
- Lopez-Fernandez, J.; Moreno-Pozas, L.; Martos-Naya, E.; Lopez-Martinez, F.J. Moment-Based Parameter Estimation for the Two-Wave with Diffuse Power Fading Model. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Frolik, J. On appropriate models for characterizing hyper-Rayleigh fading. IEEE Trans. Wirel. Commun.
**2008**, 7, 5202–5207. [Google Scholar] [CrossRef] - Zöchmann, E.; Blumenstein, J.; Marsalek, R.; Rupp, M.; Guan, K. Parsimonious channel models for millimeter wave railway communications. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zöchmann, E.; Hofer, M.; Lerch, M.; Pratschner, S.; Bernadó, L.; Blumenstein, J.; Caban, S.; Sangodoyin, S.; Groll, H.; Zemen, T.; et al. Position-Specific Statistics of 60 GHz Vehicular Channels During Overtaking. IEEE Access
**2019**, 7, 14216–14232. [Google Scholar] [CrossRef] - Zöchmann, E.; Caban, S.; Mecklenbräuker, C.F.; Pratschner, S.; Lerch, M.; Schwarz, S.; Rupp, M. Better than Rician: Modelling millimetre wave channels as two-wave with diffuse power. EURASIP J. Wirel. Commun. Netw.
**2019**, 2019, 21. [Google Scholar] [CrossRef] [Green Version] - Mavridis, T.; Petrillo, L.; Sarrazin, J.; Benlarbi-Delaï, A.; De Doncker, P. Near-body shadowing analysis at 60 GHz. IEEE Trans. Antennas Propag.
**2015**, 63, 4505–4511. [Google Scholar] [CrossRef] [Green Version] - Durgin, G.D.; Rappaport, T.S.; de Wolf, D.A. New analytical models and probability density functions for fading in wireless communications. IEEE Trans. Commun.
**2002**, 50, 1005–1015. [Google Scholar] [CrossRef] [Green Version] - Maric, A.; Kaljic, E.; Njemcevic, P. An Alternative Statistical Characterization of TWDP Fading Model. Sensors
**2021**, 21, 7513. [Google Scholar] [CrossRef] [PubMed] - Tepedelenlioglu, C.; Abdi, A.; Giannakis, G. The Ricean K factor: Estimation and performance analysis. IEEE Tran. Wirel. Commun.
**2003**, 2, 799–810. [Google Scholar] [CrossRef] [Green Version] - Shi, B.; Pallotta, L.; Giunta, G.; Hao, C.; Orlando, D. Parameter Estimation of Fluctuating Two-Ray Model for Next, Generation Mobile Communications. IEEE Trans. Veh. Technol.
**2020**, 69, 8684–8697. [Google Scholar] [CrossRef] - Weisstein, E.W. Cubic Formula. Available online: https://mathworld.wolfram.com/CubicFormula.html (accessed on 1 October 2021).

**Figure 1.**${\widehat{\Delta}}_{mean}$ (with absolute error bars) vs. $\Delta $ for (

**a**) $K=1$, (

**b**) $K=3$, (

**c**) $K=10$, and (

**d**) $K=30$. The solid line shows a linear regression fit to the data. The unit slope dashed line is illustrated as a benchmark.

**Figure 2.**${\widehat{K}}_{mean}$ (with absolute error bars) vs. K for (

**a**) $\Gamma =0.2$, (

**b**) $\Gamma =0.3$, (

**c**) $\Gamma =0.5$, and (

**d**) $\Gamma =1$. The solid line shows a linear regression fit to the data. Unit slope dashed line is illustrated as a benchmark.

**Figure 3.**${\widehat{\Gamma}}_{mean}$ (with absolute error bars) vs. $\Gamma $ for (

**a**) $K=1$, (

**b**) $K=3$, (

**c**) $K=10$, and (

**d**) $K=30$. The solid line shows a linear regression fit to the data. The unit slope dashed line is illustrated as a benchmark.

**Figure 4.**$\sqrt{CR{B}_{K}N/{K}^{2}}$ (solid line) and $\sqrt{As{V}_{K}N/{K}^{2}}$ (dashed line) of $\widehat{K}$ given by (20), for different values of $\Gamma $.

**Figure 5.**$\sqrt{CR{B}_{\Gamma}N/{\Gamma}^{2}}$ (solid line) and $\sqrt{As{V}_{\Gamma}N/{\Gamma}^{2}}$ (dashed line) of $\widehat{\Gamma}$ given by (21), for different values of K.

**Figure 6.**$\sqrt{As{V}_{\Gamma}N/{({V}_{2}/{V}_{1})}^{2}}$ of $\widehat{\Gamma}$ (solid line) and $\sqrt{As{V}_{\Delta}N/{({V}_{2}/{V}_{1})}^{2}}$ of $\widehat{\Delta}$ (dashed line), for different values of K.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Njemcevic, P.; Kaljic, E.; Maric, A.
Moment-Based Parameter Estimation for the Γ-Parameterized TWDP Model. *Sensors* **2022**, *22*, 774.
https://doi.org/10.3390/s22030774

**AMA Style**

Njemcevic P, Kaljic E, Maric A.
Moment-Based Parameter Estimation for the Γ-Parameterized TWDP Model. *Sensors*. 2022; 22(3):774.
https://doi.org/10.3390/s22030774

**Chicago/Turabian Style**

Njemcevic, Pamela, Enio Kaljic, and Almir Maric.
2022. "Moment-Based Parameter Estimation for the Γ-Parameterized TWDP Model" *Sensors* 22, no. 3: 774.
https://doi.org/10.3390/s22030774