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Abstract: Two-wave with diffuse power (TWDP) is one of the most promising models for description
of a small-scale fading effects in the emerging wireless networks. However, its conventional parame-
terization based on parameters K and ∆ is not in line with model’s underlying physical mechanisms.
Accordingly, in this paper, we first identified anomalies related to usage of conventional TWDP
parameterization in moment-based estimation, showing that the existing ∆-based estimators are
unable to provide meaningful estimates in some channel conditions. Then, we derived moment-based
estimators of recently introduced physically justified TWDP parameters K and Γ and analyzed their
performance through asymptotic variance (AsV) and Cramer–Rao bound (CRB) metrics. Performed
analysis has shown that Γ-based estimators managed to overcome all anomalies observed for ∆-based
estimators, simultaneously improving the overall moment-based estimation accuracy.

Keywords: TWDP fading channel; moment-based estimation; Cramer–Rao bound; asymptotic variance

1. Introduction

Small-scale fading severely degrades performance of wireless communication sys-
tems [1]. Thus, in order to design highly reliable and efficient transceivers for communi-
cation in deep fading conditions, it is of profound significance to have an accurate and
tractable fading model [2,3]. Traditionally, the signal affected by small-scale fading in
nonline-of-sight (NLOS) environments has been modeled as a sum of many diffuse com-
ponents and described by Rayleigh distribution. Withal, the Rician fading model has
been used for the description of received signal variations in better-than-Rayleigh chan-
nel conditions, since, except for many diffuse components, it also assumes the presence
of one dominant specular component [4]. However, in some multipath sparse channels,
traditional fading models fall short of accurately describing small-scale variations of the
received complex envelope [4], which makes them nonviable for accurate modeling of all
propagation conditions [5].

The aforementioned is especially pronounced in mmWave 5G communication net-
works equipped with directional antennas or arrays [6] as well as in wireless sensor
networks deployed in cavity environments [3], where measurements have shown that the
signal in multipath sparse propagation conditions may, in some cases, experience fading
with characteristics worse than those in Rayleigh channels [4].

In such scenarios, the TWDP fading model—which assumes the presence of two
specular components instead of just one considered by Rician model—appears to be
appropriate for modeling small-scale fading effects [7]. In this regard, it is shown that TWDP
distribution describes small-scale fading more accurately than conventional distributions in
static sensor networks with their nodes placed within cavity environments, such as aircrafts
and buses [3] and abroad a large transport helicopter [8]. It is also shown that its PDF shape
significantly coincides with empirical results obtained for train-to-infrastructure wireless
communication [9], vehicle-to-vehicle 60 GHz urban communication [10], and mmWave
communication in indoor environments [11,12].
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Thereat, the TWDP model itself represents generalization of Rayleigh and Rician
fading models and can be used for modeling both better-than-Rayleigh and worse-than-
Rayleigh fading conditions. It is based on the assumption that the waves arriving at the
receiver can be observed as a sum of two specular components with constant magnitudes
V1 and V2 and uniformly distributed phases, plus many diffuse components treated as a
complex zero-mean Gaussian random process with average power 2σ2. As such, the model
is conventionally parameterized by K and ∆, defined as [13]:

K =
V2

1 + V2
2

2σ2
(1)

∆ =
2V1V2

V2
1 + V2

2
(2)

where parameter K (K ≥ 0) characterizes the ratio of the average power of specular compo-
nents to the average power of remaining diffuse components (like the Rician parameter
KRice = V2

1 /
(
2σ2)) and parameter ∆ (0 ≤ ∆ ≤ 1) characterizes the relation between magni-

tudes of specular components. Consequently, the average received signal power Ω is equal
to V2

1 + V2
2 + 2σ2.

However, as it is elaborated in [14], the definition of parameter ∆ is not in accordance
with the model’s underlying physical mechanisms. Namely, according to the model’s
definition, specular components have constant magnitudes and are propagating in a linear
medium. Consequently, V2 can be nothing but the linear combination of V1, wherefore the
function which characterizes the ratio between V1 and V2 has to be linear [14]. However,
∆-based parameterization introduces a nonlinear relation between magnitudes of specular
components, since V2 = V1(1−

√
(1− ∆2))/∆. This hinders accurate observation of the

impact of the ratio between V1 and V2 on a system’s performance metrics and causes
anomalies within the expressions obtained by integration or derivation with respect to
parameter ∆ [14].

Considering that previously mentioned, Γ-based parameterization was recently pro-
posed in [14], by introducing parameters K and Γ:

K =
V2

1 + V2
2

2σ2
(3)

Γ =
V2

V1
(4)

where Γ (0 ≤ Γ ≤ 1, for 0 ≤ V2 ≤ V1) obviously ensures linear dependence between
V1 and V2. On the other side, the definition of parameter K remains unchanged, but the
definition expression of normalized K/KRice with respect to the ratio between V1 and V2, e.g.,
K/KRice = 1 + (V2/V1)

2 (where KRice is the Rician parameter), is affected by the choice of
second parameter (∆ vs. Γ). Obviously, parameter ∆ completely changes its character since
K/KRice = 2(1− 1

√
1− ∆2)/∆2, while Γ does not, since K/KRice = 1 + Γ2 [14].

Despite that aforementioned, Γ-based parameterization has up to now been considered
only in [14], by elaborating its benefits on ASEP observation accuracy. However, no other
benefits of Γ-based parameterization or the anomalies caused by the nonphysical definition
of a ∆ parameter within the expressions which involve integration or derivation with
respect to ∆ have been presented yet. Accordingly, in this paper, one such anomaly is
identified within ∆-parameterized TWDP moment-based estimators and overcome by
introducing the appropriate estimators for Γ-parameterized TWDP fading model. In that
sense, this paper focuses on performance analysis of moment-based parameter estimators,
for both ∆- and Γ-based TWDP parameterizations.

Considering that aforementioned, in Section 2, an overview of the results related to
estimation of TWDP parameters is foremost presented, elaborating in detail anomalies
caused by conventional ∆-based parameterization and indicating the absence of those
related to a Γ-parameterized TWDP model. In Section 3, a closed-form moment-based
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estimator is derived for Γ-based parameterization, and their behavior is examined for
various values of proposed parameters. In Section 4, performance analysis of proposed
estimators is performed. First, corresponding asymptotic variances are derived and graphi-
cally presented and then the limits of estimation problem are explored and determined in
terms of Cramer–Rao bound. Finally, ∆- and Γ-based estimators are compared in Section 5,
in order to gain insight into the differences in their behavior and their estimation accuracy.
Conclusions are outlined in Section 6.

2. Related Works

The estimation of parameters that characterize fading channel is of practical impor-
tance in a variety of wireless scenarios. It includes not only delay insensitive channel
characterization and link budget calculations, but also online adaptive coding/modulation
for which the estimation of parameters must be both accurate and prompt [15]. In that
sense, inaccurate estimation of channel parameters leads to a non-optimal channel capacity
utilization, which might significantly affect highly mobile communication systems such as
vehicular-to-vehicular and vehicular-to-infrastructure. Accordingly, different approaches in
estimation of TWDP parameters are proposed to make a deal between their computational
complexity and estimation accuracy. These approaches usually assume that the value of
parameter Ω can be directly estimated from the data set as a second moment [10], so the
estimation problem has become focused on determination of values of K and ∆.

Among the investigated approaches used to estimate parameters of ∆-based parame-
terization, the distribution fitting approach is used for measurements performed in air-craft
and buses at 2.4 GHz [3], while the maximum likelihood procedure (ML) is used for
measurements performed at 60 GHz in the indoor environment [11] and in vehicular-
to-vehicular propagation scenarios [10]. However, it is shown that both approaches are
computationally very complex and inappropriate for online applications. Accordingly, the
moment-based approach is considered in [4,7,12], as a compromise between estimator’s
complexity and its accuracy. Thereat, in [7], estimators are derived only as conditional
expressions which can not be used for practical estimations in which both parameters
are unknown. To overcome the issue, the exact joint estimators of TWDP parameters are
derived in [4] as computationally simple expressions. However, for certain combinations
of parameters K and ∆, the estimator of parameter ∆, ∆̂, derived in [4], provides physically
unsubstantiated results, which can be demonstrated by applying ([4], Equation (16)) on
Monte Carlo simulated samples.

Accordingly, for each combination of K and ∆, where K = {1, 3, 10, 30} and
∆ = {0, 0.1, 0.2, . . . , 1}, 500 realizations of the TWDP process with N = 104 i.i.d. sam-
ples are generated. The estimate of parameter ∆ from j-th realization, ∆̂j, is obtained
by ([4], Equation (16)) and, for each combination of K and ∆, sample mean value ∆̂mean is
calculated as (1/500)∑500

j=1 ∆̂j. The results are presented in Figure 1.
From Figure 1, it can be observed that, for large values of ∆ (i.e., for ∆ ≈ 1), ∆ estimates

may exceed 1 regardless of the value of parameter K. However, according to definition
of ∆:

(1− ∆) =
(V1 −V2)

2

V2
1 + V2

2
(5)

(1− ∆) ≥ 0, for (V1, V2) ∈ R2 (6)

the parameter has to be lower or equal to one (∆ ≤ 1) for any (V1, V2) ∈ R2. Accordingly,
estimates of ∆ greater than 1 are physically unsubstantiated and can not be used to gain
any insight into the relation between V1 and V2.
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Figure 1. ∆̂mean (with absolute error bars) vs. ∆ for (a) K = 1, (b) K = 3, (c) K = 10, and (d) K = 30.
The solid line shows a linear regression fit to the data. The unit slope dashed line is illustrated as
a benchmark.

Presented results related to sample means, when ∆ is in the vicinity of 1, are also in
contrast with underlying physical mechanisms. Namely, as magnitudes of two dominant
waves become approximately the same (V1 ≈ V2), i.e., when ∆ ≈ 1, it gets harder to discern
the two rays [16]. However, Figure 1 shows that error in estimation of ∆ (expressed by the
difference between ∆̂mean and ∆ and the dispersion of estimated values) in the vicinity of 1
is smaller than those obtained for moderate values of ∆. Accordingly, estimated values of
∆ greater than 1, except for being useless for estimation of channel conditions, also lead to
the false accurate sample means when ∆ ≈ 1, obtained by averaging potentially accurate
values of ∆̂j smaller than 1 and unsubstantiated estimated values greater than 1.

On the other side, in the region of small and moderate values of ∆, the proposed
estimator provides meaningful results. However, its usage leads to huge estimation error
of parameter ∆, which is especially pronounced for small and moderate values of K.

Accordingly, due to the nonphysical definition of parameter ∆, although being analyti-
cally correct, ∆̂ ([4],Equation (16)) provides irrelevant results for certain combinations of
parameters K and ∆, and huge errors in estimation of ∆ for some others. Therefore, it is
very desirable to derive estimators for physically justified Γ-based parameterization and to
investigate their behavior in different channel conditions.

3. Moment-Based Estimators for the Γ-Parameterized TWDP Model

In order to derive moment-based estimators for the Γ-parameterized TWDP model, the
expression for n-th moments of a signal envelope r given by ([4], Equation (6)) is expressed
in terms of Γ, as:
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µn = E[rn] =

( n
2
)
!Ω

n
2

(1 + K)
n
2 2π

n
2

∑
m=0

( n
2
m

)
Km

m!

∫ 2π

0

(
1 +

(
2Γ

1 + Γ2

)
cos(θ)

)m
dθ (7)

and for even values of n, obtained as a simple closed form expression:

µn =

( n
2
)
!Ω

n
2

(1 + K)
n
2

n
2

∑
m=0

( n
2
m

)(
K

1 + Γ2

)m
2F1
(
−m,−m; 1, Γ2)

m!
, for

n
2
∈ N (8)

where E(·) is the expectation operator.
Obviously, the n-th moment of signal’s envelope µn = E[rn] depends on three un-

known parameters: K, Γ, and Ω. Consequently, estimators of these parameters can be
constructed from at least three different moments. Thereby, it is shown that estimation
accuracy is the largest when the lower-order moments are used [4]. Accordingly, moment-
based estimators of the Γ-parameterized TWDP model should be generated using second-,
fourth-, and sixth-order moments, since only even moments can be obtained from (8).
Thereat, in order to further reduce the estimation complexity, the impact of parameter Ω
on K and Γ could be canceled out by properly defining ratios between the fourth- and the
second-order as well as the sixth- and the second-order moments of an envelope [4]. It
finally leads to the system of two equations:

µ4

µ2
2
=

2 + 4K + K2

(1 + K)2 +

(
2Γ

1 + Γ2

)2 K2

2(1 + K)2 (9)

µ6

µ3
2
=

6 + 18K + 9K2 + K3

(1 + K)3 +

(
2Γ

1 + Γ2

)2 9K2 + 3K3

2(1 + K)3 (10)

which could be solved for K̂ and Γ̂ if sample moments µ̂n = 1
N ∑N

i=1 rn
i are used instead of

the ensemble averages µn. In this regard, after (9) is inserted in (10), (10) can be expressed
as: is expressed as:

µ̂6

µ̂3
2
= 3

µ̂4

µ̂2
2
− 6K̂2 + 2K̂3(

1 + K̂
)3 +

(
2Γ̂

1 + Γ̂2

)2 3K̂2(
1 + K̂

)3 (11)

i.e., as: (
2Γ̂

1 + Γ̂2

)2

=
6 + 2K̂

3
+

(
1 + K̂

)3

3K̂2

(
µ̂6

µ̂3
2
− 3

µ̂4

µ̂2
2

)
(12)

Then, (12) is inserted in (9), transforming it into the following polynomial:

a(1 + K̂)3 + b(1 + K̂)2 + 6(1 + K̂)− 2 = 0 (13)

where a and b are defined as:

a =
µ̂6

µ̂3
2
− 3

µ̂4

µ̂2
2
+ 2 (14)

b = 6

(
1− µ̂4

µ̂2
2

)
(15)
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By analyzing the discriminant of the polynomial (13), it can be shown that, for any values
of K and Γ, the considered polynomial has one real root and one pair of complex conjugate
ones. Thus, following the [17], one can find the real root of polynomial (13) as:

1 + K̂ =
−b + 2 Re(Z)

3a
(16)

where Re(·) gives the real part of the complex number, and Z is defined as:

Z =

(
p +

√
q3 + p2

)1/3
(17)

where

p = 27a2 + 27ab− b3 (18)

q = 18a− b2 (19)

Considering the aforementioned, moment-based estimators of parameters K and Γ
can be obtained as simple, closed form expressions:

K̂ =
−b + 2 Re(Z)

3a
− 1 (20)

Γ̂ =

1−

√
1−

(
6+2K̂

3 +
(1+K̂)

3

3K̂2 (a− 2)
)

√
6+2K̂

3 +
(1+K̂)

3

3K̂2 (a− 2)

(21)

where parameters a, b, Z, p, and q can be easily calculated by inserting the second-, the
fourth-, and the sixth-order sample moment of an envelope into the Equations (14), (15),
(17), (18) and (19).

Simulation-Based Performance Analysis of the Γ Estimator

After the expressions for K̂ and Γ̂ are derived, it is now necessary to investigate their
performance in different channel conditions. For that purpose, Monte Carlo simulation is
performed, and the obtained results are illustrated in Figures 2 and 3.

Thereby, for each combination of K and Γ, where K = {1, 3, 10, 30} and
Γ = {0, 0.1, 0.2, . . . , 1}, 500 realizations of the TWDP process with N = 104 i.i.d. samples are
generated and used in order to determine estimates K̂j (20) and Γ̂j (21), for j ∈ [1, 500]. These
values are used to calculate sample means K̂mean and Γ̂mean as K̂mean = (1/500)∑500

j=1 K̂j and

Γ̂mean = (1/500)∑500
j=1 Γ̂j. Figure 2 shows the boundaries where the estimates of parameter

K for each realization of TWDP process are located with respect to the mean estimated
value K̂mean, while Figure 3 illustrates the boundaries where each estimate of parameter Γ
is located with respect to its mean estimated value.

From Figure 2, it can be observed that the estimator of parameter K given by (20)
provides accurate results, especially in the region of medium and large values of K and Γ
(e.g., K ≥ 3 and Γ ≥ 0.3 for N = 104 samples), where K̂mean is very close to K.

From Figure 3, it can be observed that Γ estimates, Γ̂j, are always smaller than one,
which is in accordance with the physical mechanisms described in [16]. Consequently, as Γ
approaches one, Γ̂mean starts to increasingly deviate from Γ, causing an increase in error of
its estimation. Accordingly, Figure 3 indicates that no anomalies ascertained for ∆̂ can be
observed within the Γ̂. It also can be observed that, for small values of K (in the vicinity
of one), Γ̂ provides accurate estimation only in the narrow range of Γ values close to 0.6.
However, from the practical point of view, the results for relatively small values of K are
irrelevant since, in that region, TWDP and Rayleigh distributions are almost identical. On
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the other side, the increment of K increases the range of Γ values where the estimation
is accurate (more precisely, for a considered simulation with N = 104 samples, Γ̂mean is
remarkably close to Γ for 0.2 ≤ Γ ≤ 0.8 and K ≥ 3). From Figure 3, it can also be observed
that, in the considered range, dispersion of estimated values (expressed by absolute error
bars) is quite insignificant, indicating that derived estimator provides accurate estimates of
Γ even for a relatively small number of samples (i.e., 104).
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Figure 2. K̂mean (with absolute error bars) vs. K for (a) Γ = 0.2, (b) Γ = 0.3, (c) Γ = 0.5, and
(d) Γ = 1. The solid line shows a linear regression fit to the data. Unit slope dashed line is illustrated
as a benchmark.
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Figure 3. Γ̂mean (with absolute error bars) vs. Γ for (a) K = 1, (b) K = 3, (c) K = 10, and (d) K = 30.
The solid line shows a linear regression fit to the data. The unit slope dashed line is illustrated as
a benchmark.

4. AsV and CRB

To further assess the performance of proposed estimators, corresponding asymptotic
variances for K and Γ, AsVK and AsVΓ, are calculated from (20) and (21), as [4]:

AsVK = gKCvM (22)

AsVΓ = gΓCvM (23)

where:

gK =

[
∂K̂
∂µ̂2

,
∂K̂
∂µ̂4

,
∂K̂
∂µ̂6

]
µ̂2=µ2,µ̂4=µ4,µ̂6=µ6

(24)

gΓ =

[
∂Γ̂
∂µ̂2

,
∂Γ̂
∂µ̂4

,
∂Γ̂
∂µ̂6

]
µ̂2=µ2,µ̂4=µ4,µ̂6=µ6

(25)

and CvM is a covariance matrix with elements:

[CvM]ij =
1
N
(
µ2i+2j − µ2iµ2j

)
, for i, j = 1, 2, 3 (26)

In addition, Cramer–Rao lower bounds are numerically calculated as [4]:

CRBK = [I(θ)−1]11 (27)

CRBΓ = [I(θ)−1]22 (28)

where the elements of Fisher Information Matrix I(θ), [I(θ)]ij, are determined as:

[I(θ)]ij = NE
[

∂ln f (r)
∂θi

∂ln f (r)
∂θj

]
, for i, j = 1, 2, 3 (29)

and where N is the number of observations, f (r) is the closed-form TWDP envelope PDF
given by [14] [Equation (7)], and θ = [K, Γ, Ω]

Thereby, following the approach presented in [4,7], instead of using CRB and AsV, the
square root of CRB and AsV normalized to N and the true value of estimating parameter
are used in estimator performance assessment. Thus, to assess the estimation error, the sqrt-
normalized CRB and AsV of K̂,

√
CRBK N/K2 and

√
AsVK N/K2, are plotted in Figure 4,
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and sqrt-normalized CRB and AsV of Γ̂,
√

CRBΓN/Γ2 and
√

AsVΓN/Γ2, are plotted in
Figure 5.

From Figure 4, it can be observed that the estimation error of K increases with the
decrease of parameter K. Thereby, when the power of specular components V2

1 + V2
2 is

small with respect to the power of diffuse components 2σ2 (i.e., when the TWDP channel
becomes Rayleigh-like), the error in estimation of K is very large. However, as the value
of parameter K increases, i.e., as V2

1 + V2
2 overrides 2σ2, the estimation of parameter K

becomes very accurate. Figure 4 also shows that the error in estimation of K grows with the
reduction of Γ, indicating that it becomes harder to accurately estimate K as the specular
component with the magnitude V2 becomes less significant with respect to one with the
magnitude V1.

From Figure 4, it can also be observed that the values of sqrt-normalized AsVK are
remarkably close to the sqrt-normalized CRBK for the entire considered range of parameters
K and Γ, indicating almost asymptotic efficiency of the proposed estimator of a parameter K.
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Figure 4.
√

CRBK N/K2 (solid line) and
√

AsVK N/K2 (dashed line) of K̂ given by (20), for different
values of Γ.
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√

CRBΓ N/Γ2 (solid line) and
√

AsVΓ N/Γ2 (dashed line) of Γ̂ given by (21), for different
values of K.

Figure 5 shows that the estimation error of parameter Γ behaves similarly as the
estimation error of K̂, with respect to K and Γ. Hence, the estimation of Γ deteriorates
with the reduction of K, i.e., as the power of diffuse components becomes more significant
with respect to V2

1 + V2
2 . The estimation error of Γ̂ is large for small values of Γ, indicating

that it is hard to estimate the values of Γ when V2 is insignificant with respect to V1. For
moderate values of Γ, Γ̂ given by (21) starts to provide pretty accurate results, especially
for large values of K. However, as Γ approaches one, estimation of Γ becomes more
inaccurate. In these conditions, the magnitudes of specular components, V1 and V2, become
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similar. Considering the aforementioned and the fact that the phase difference between
these components is uniform, the probability of destructive superposition of specular
components becomes more likely, making their overall magnitude often insignificant. Thus,
as Γ approaches one, it gets harder to accurately determine the value of V2/V1, especially
when the power of diffuse components is large with respect to V2

1 + V2
2 .

When it comes to the observation of the proximity of the proposed Γ estimator to its
CRB, it can be concluded from Figure 5 that the values of the sqrt-normalized AsVΓ are
remarkably close to the sqrt-normalized CRBΓ for K ≥ 2 in the entire range of Γ, making
the proposed estimator asymptotically efficient for the considered values of K.

Accordingly, except for providing estimation errors significantly close to the cor-
responding CRBs, moment-based estimators (20) and (21) provide accurate estimates
obtained from a relatively small number of samples, which can be clearly observed from
Figures 4 and 5. For example, if we assume that the sufficient accuracy of estimation pro-
cess is 20%, it can be achieved with N = 104 samples for Γ ∈ [0.3, 0.9] and K ≥ 3 (obtained
by multiplying estimation errors

√
AsVK N/K2 and

√
AsVΓN/Γ2 by 1/

√
N).

If necessary, the estimation accuracy in the determined region can be increased, or the
region itself can be further expanded, by involving more samples within the estimation process
(e.g., by employing N = 106 samples, relative estimation error in the considered region of
parameters K and Γ could be reduced to 2%, or the estimation error of 20% could be achieved
for the wider range of K and Γ, i.e., K ≥ 3 and Γ ∈ [0.16, 0.99]). In this way, the procedures
used to create Figures 4 and 5 can be used to determine the number of samples needed to
obtain desired estimation accuracy within the desired range of parameters K and Γ.

5. Comparison of Moment-Based Estimators for the ∆- and Γ-Parameterized
TWDP Model

In order to observe qualitative differences between Γ- and ∆-based parameterization
and to gain more precise insight into the relation between estimation errors for considered
parameterizations, AsV∆ and AsVΓ are normalized to the same parameter ratio V2/V1 and
presented in Figure 6. This enables us to compare absolute values of AsV for ∆ and Γ and
to discover differences in their estimation errors for considered ratios between V1 and V2.
Figure 6 shows that, for 0 ≤ V2/V1 ≤ 0.5 (which corresponds to 0 ≤ ∆ ≤ 0.8), estimation
error of parameter Γ is up to two times smaller than the error obtained for ∆ parameter
estimation. On the other side, for 0.5 < V2/V1 < 0.8 (i.e., 0.8 < ∆ < 0.96) and K ≥ 3,
there is no significant difference in accuracy of ∆̂ and Γ̂. Finally, for V2/V1 ∈ [0.8, 1], error
in estimation of Γ starts to increase with the increment of V2/V1, thus being in line with
the model’s physical mechanisms. On the contrary, in the considered region, ∆-based
parameterization provides false accurate results, obtained by also considering values of ∆̂
greater than one in calculation of AsV∆.
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Figure 6.
√

AsVΓ N/(V2/V1)2 of Γ̂ (solid line) and
√

AsV∆ N/(V2/V1)2 of ∆̂ (dashed line), for differ-
ent values of K.



Sensors 2022, 22, 774 11 of 12

Accordingly, in the region of ∆ ≤ 0.8, i.e., Γ ≤ 0.5, estimation accuracy is significantly
improved by using Γ-based parameterization instead of ∆-based, while in the region of
∆ ≈ 1, i.e., Γ ≈ 1, Γ-based parameterization prevents the occurrence of nonphysical
solutions obtained by estimating parameter ∆.

Except for benefits of Γ-based parameterization observed with respect to Γ̂, it also
enables reduction of the estimation error of a parameter K, for a much wider set of values
of a parameter, which reflects the relation between V1 and V2. Namely, based on the
expression of parameter K given in terms of ∆ and the results presented in [14] [Figure 2], it
can be concluded that K/KRice is almost constant for the entire range of small and medium
values of ∆, implying that values of V2 ∈ [0, V1/2] make almost no impact on the value
of parameter K. This causes quite pronounced errors in estimation of K for the entire
range of small and medium values of ∆ (i.e., 0 ≤ ∆ < 0.5), which can be clearly observed
from [4] [Figure 1]. On the contrary, Figure 4 shows that, when K is expressed in terms of
Γ, no such anomaly can be observed. In these circumstances, errors in estimation of K are
huge only for small values of Γ (i.e., Γ < 0.2).

6. Conclusions

In this paper, the problem of TWDP parameters’ estimation has been investigated
in depth. The investigation revealed that the existing moment-based estimators of con-
ventional TWDP parameters are not able to provide accurate estimations for various
combinations of their values, due to a nonphysical definition of parameter ∆. Accordingly,
in this paper, moment-based estimators for physically justified parameters K and Γ are
derived. It is shown that derived estimators provide estimates from 104 samples with the
estimation error smaller than 20%, when parameters K and Γ are in the range K ≥ 3 and
0.3 ≤ Γ ≤ 0.9. This indicates that the parameters K and Γ can be efficiently estimated using
derived expressions within the range of these parameters expected to be obtained in the
mmWave band, even from a relatively small number of samples. Since Γ-based estimators
enable us to gain precise insight into the ratios between two specular and specular to dif-
fuse components in the wide varieties of propagation conditions, simultaneously reducing
estimation errors with respect to ∆-based parameterization, it is recommended to adopt
parameters K and Γ as the only relevant parameters for a description of TWDP fading
and to revise the existing measurement-based results related to the estimation of TWDP
parameters in specific propagation conditions.
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