# An Automotive Ferrofluidic Electromagnetic System for Energy Harvesting and Adaptive Damping

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Concept

## 3. Optimization of the Electromagnetic System

_{x}maintains maximum variations under given conditions of motion, and the coils have the optimal dimensions and electrical parameters.

#### 3.1. Optimization of the Magnetic Pitch

_{mf}equation for the single-phase linear generator can be approximated as follows:

#### 3.2. Optimization of the Magnetic Potential Distribution along the Slider with Magnetorheological Fluid Containers

## 4. Experimental Testing of the Optimized Design

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

Index | Title | Unit of Measure |

MRF | Magneto rheological fluid | N/A |

p | Magnet height | mm |

T | Slider magnetic spatial period | mm |

ν(t) | Speed | m/s |

k | Voltage constant | V |

R | Residence | Ω |

r | Slider radius | mm |

E_{mf} | Electromotive force | V |

d | Excitation value | mm |

B_{x} | Magnetic flux density | T |

## References

- Rauch, F. Vibration therapy. Dev. Med. Child Neurol.
**2009**, 51, 166–168. [Google Scholar] [CrossRef] [PubMed] - Herbut, A.; Khairutdinov, M.M.; Kongar-Syuryun, C.; Rybak, J. The surface wave attenuation as the effect of vibratory compaction of building embankments. IOP Conf. Ser. Earth Environ. Sci.
**2019**, 362, 012131. [Google Scholar] [CrossRef][Green Version] - Crandall, S.H. The role of damping and vibration. J. Sound Vib.
**1970**, 11, 3–18. [Google Scholar] [CrossRef] - Garcido-Vallejo, G.; Valverde, J.; Dominguez, J. An Internal Damping Model for the Absolute Nodal Coordinate Formulation. Nonlinear Dyn.
**2005**, 42, 347–369. [Google Scholar] [CrossRef] - Adhikari, S.; Woodhouse, J. Identification of damping: Part 1, viscous damping. J. Sound Vib.
**2001**, 243, 43–61. [Google Scholar] [CrossRef][Green Version] - Pierre, C.; Ferri, A.A.; Dowell, E.H. Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method. J. Appl. Mech.
**1985**, 52, 958–964. [Google Scholar] [CrossRef] - Tatsuoka, F.; Iwasaki, T.; Takagi, Y. Hysteretic damping of sands under cyclic loading and its relation to shear modulus. Soils Found.
**1978**, 18, 25–40. [Google Scholar] [CrossRef] - Furuichi, Y.; Tagawa, T. Numerical Study of the Magnetic Damping Effect on the Sloshing of Liquid Oxygen in a Propellant Tank. Fluids
**2020**, 5, 88. [Google Scholar] [CrossRef] - Niculescu, A.; Jankowski, A.; Kowalski, M.; Sireteanu, T. Solutions in the Vehicle Suspension. J. KONES
**2019**, 26, 4, 185–196. [Google Scholar] [CrossRef] - Jiang, R.; Rui, X.; Wang, G.; Yang, F.; Zhu, W.; Wei, M. Design and modeling of an innovative magnetorheological fluid-elastomeric damper with compact structure. Orig. Artic. J. Intell. Mater. Syst. Struct.
**2020**, 31, 2088–2100. [Google Scholar] [CrossRef] - Delis, E.A.; Malla, R.B.; Madani, M.; Thompson, K.J.; Asce, M.; Malla, R.B.; Madani, M.; Thompson, K.J. Energy dissipation devices in bridges using hydraulic dampers. ASCE Struct. Congr.
**1996**, 2, 1188–1191. [Google Scholar] - Sharma, S.K.; Kumar, A. Ride comfort of a higher speed rail vehicle using a magnetorheological suspension system. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn.
**2018**, 232, 32–48. [Google Scholar] [CrossRef][Green Version] - Segla, S.; Segla, S.; Reich, S. Optimization and comparison of passive, active, and semi-active vehicle suspension systems. In Proceedings of the 12th IFToMM World Congress, Besançon (France), Besançon, France, 17–21 June 2007. [Google Scholar]
- Xu, X.; Sardahi, Y.; Zheng, C. Multi-Objective Optimal Design of Passive Suspension System With Inerter Damper. Dyn. Syst. Control Conf.
**2018**, 51913, V003T40A006. [Google Scholar] [CrossRef] - Tseng, H.E.; Hrovat, D. State of the art survey: Active and semi-active suspension control. Veh. Syst. Dyn.
**2015**, 53, 1034–1062. [Google Scholar] [CrossRef] - Gysen, B.L.J.; Sande, T.P.J.; van der Paulides, J.J.H.; Lomonova, E.A. Efficiency of a Regenerative Direct-Drive Electromagnetic Active Suspension. Trans. Veh. Technol.
**2011**, 60, 1384–1393. [Google Scholar] [CrossRef][Green Version] - Choi, H.D.; You, S.H. Fuzzy Finite Memory State Estimation for Electro-Hydraulic Active Suspension Systems. IEEE Access
**2021**, 9, 99364–99373. [Google Scholar] [CrossRef] - Gill, C.; Knight, C.; McGarry, S. Measured Power Dissipation of Shock Absorbers on Light and Heavy Commercial Vehicles. SAE Int. J. Commer. Veh.
**2014**, 7, 718–725. [Google Scholar] [CrossRef] - Fischer, D.; Isermann, R. Mechatronic semi-active and active vehicle suspensions. Control Eng. Pract.
**2003**, 12, 1353–1367. [Google Scholar] [CrossRef] - Bai, X.X.; Deng, X.-C.; Shen, S. Controllability of magnetorheological shock absorber: II. Testing and analysis. Smart Mater. Struct.
**2018**, 28, 15–23. [Google Scholar] [CrossRef] - Bai, X.X.; Wereley, N.M.; Wang, D. Controllability of magnetorheological shock absorber. Part I: Insights, modeling and simulation. Smart Mater. Struct.
**2018**, 28, 015022. [Google Scholar] [CrossRef] - Nerubenko, G. Vibration Energy Harvesting Damper in Vehicle Driveline. SAE Tech. Pap.
**2019**. [Google Scholar] [CrossRef] - Prabakar, R.S.; Sujatha, C.; Narayanan, S. Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper. J. Sound Vib.
**2009**, 326, 400–420. [Google Scholar] [CrossRef] - Liao, W.H.; Wang, D.H. Semiactive Vibration Control of Train Suspension Systems via Magnetorheological Dampers. J. Intell. Mater. Syst. Struct.
**2003**, 14, 161–172. [Google Scholar] [CrossRef] - Du, X.; Yu, M.; Fu, J.; Huang, C. Experimental study on shock control of a vehicle semi-active suspension with magneto-rheological damper. Smart Mater. Struct.
**2020**, 29, 074002. [Google Scholar] [CrossRef] - Zhang, Y.; Guo, K.; Wang, D.; Chen, C.; Li, X. Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy
**2017**, 119, 961–970. [Google Scholar] [CrossRef] - Shih, M.-H.; Sung, W.-P. The energy dissipation behavior of displacement dependent semi-active hydraulic damper. Struct. Eng./Earthq. Eng.
**2004**, 21, 121–129. [Google Scholar] [CrossRef][Green Version] - Wei, C.; Taghavifar, H. A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model. Energy
**2017**, 134, 279–288. [Google Scholar] [CrossRef] - Harikrishnan, P.M.; Gopi, V.P. Vehicle Vibration Signal Processing for Road Surface Monitoring. IEEE Sens. J.
**2017**, 17, 5192–5197. [Google Scholar] [CrossRef] - Li, H.; Pillay, P. A methodology to design linear generators for energy conversion of ambient vibrations. IEEE Trans. Ind. Appl.
**2011**, 47, 2445–2452. [Google Scholar] [CrossRef] - Zhang, Z.; Zhang, X.; Chen, W.; Rasim, Y.; Salman, W.; Pan, H.; Yuan, Y.; Wang, C. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl. Energy
**2016**, 178, 177–188. [Google Scholar] [CrossRef] - Lalor, N.; Priebsch, H.-H. The prediction of low and mid frequency internal road vehicle noise: A literature survey. J. Auromobile Eng.
**2007**, 221, 245–269. [Google Scholar] [CrossRef] - Zhang, B.; Zhang, Q.; Wang, W.; Han, J.; Tang, X.; Gu, F.; Ball, A.D. Dynamic Modeling and Structural Optimization of a Bistable Electromagnetic Vibration Energy Harvester. Energies
**2019**, 12, 2410. [Google Scholar] [CrossRef][Green Version] - Wei, L.; Nakamura, T.; Imai, K. Development and optimization of low-speed and high-efficiency permanent magnet generator for micro hydro-electrical generation system. Renew. Energy
**2020**, 147, 1653–1662. [Google Scholar] [CrossRef] - Herber, D.R.; Allison, J.T. Wave energy extraction maximization in irregular ocean waves usig pseudospectral methods. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013; p. 11. [Google Scholar]
- Samn, A.A.; Abdelhaleem, A.M.M.; Kabeel, A.M.; Gad, E.H. Study of a Mono-Tube Hydraulic Energy Harvesting Shock Absorber. SAE Int. J. Passeng. Cars-Mech. Syst.
**2019**, 12, 169–183. [Google Scholar] [CrossRef]

**Figure 1.**Classification of automotive suspension systems. Adapted from [9].

**Figure 2.**Conceptual prototype structure. 1—slider rod; 2—housing; 3—slider; 4—magnetorheological fluid; 5—separating piston; 6—air chamber; 7—flexible fixture; 8—coil set; 9—power conditioning system.

**Figure 3.**Schematic positions of permanent magnets in the slider. 1—slider rod; 2—non-magnetic material; 3—north magnetic pole; 4—south magnetic pole; 5—coils. Here, L—length of the slider, p—magnet height, and T—period of the segment (magnet plus non-magnetic insert).

**Figure 4.**(

**a**) 1—measured and 2—simulated (shifted + 1 V) output of a single coil when T = 18 mm, p = 12 mm, the amplitude of the sinusoidal excitation was 12.5 mm, and oscillating at 6.6 Hz.; (

**b**) 3—simulated voltage under equivalent conditions with T = 10 mm and p = 5 mm.

**Figure 5.**Versions of the magnet orientation in a slider (drawings are not to scale): (

**a**) Overall geometry and dimensions of a slider. 1—non-magnetic material; 2—MRF insert; 3—magnet. (

**b**) Unidirectional axial. (

**c**) Counter-directional axial. (

**d**) Unipolar radial. (

**e**) Differential radial.

**Figure 7.**Magnetic flux density profiles along the surface of the slider: (

**a**) All four magnet orientations simulated with a low resolution and reduced dimensions (see also Figure 5b–e). (

**b**) Optimal setup of magnet orientations; simulation compared with the measurement.

**Figure 8.**Schematic view of the experiment rack. 1—vibration source Dynamometer SPA; 2—experimental damper; 3—load resistor block; 4—data-acquiring NI-6366 converter; 5—personal computer for collecting data.

**Figure 9.**Results of the experiment. (

**a**) Output voltage captured at 7 Hz and $\left|d\right|$ = 12.5 mm. (

**b**) Output voltage captured at 4 Hz and $\left|d\right|=$ 12.5 mm. (

**c**) Output voltage captured at 7 Hz and $\left|d\right|=$ 25 mm. (

**d**) Output voltage captured at 4 Hz and $\left|d\right|=$ 25 mm excitation. The dotted line schematically illustrates the excitation value at each time moment in all cases; it corresponds to the scale annotated on the right-side axis.

**Figure 10.**Output power characteristics of the prototype single-coil energy harvester. Load characteristics correspond to left axis: line 2–4 Hz; line 1–7 Hz. The electrical power output refers to the right (power) vertical axis: line 3–4 Hz; line 4–7 Hz.

Title | Parameter |
---|---|

Purpose function | $d{B}_{x}\to max$ |

Parameters | Dimension of pitch |

Placement of magnetic field | |

Limitations | Diameter of the system |

Fixed cases of magnetic orientations |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lenkutis, T.; Viržonis, D.; Čerškus, A.; Dzedzickis, A.; Šešok, N.; Bučinskas, V.
An Automotive Ferrofluidic Electromagnetic System for Energy Harvesting and Adaptive Damping. *Sensors* **2022**, *22*, 1195.
https://doi.org/10.3390/s22031195

**AMA Style**

Lenkutis T, Viržonis D, Čerškus A, Dzedzickis A, Šešok N, Bučinskas V.
An Automotive Ferrofluidic Electromagnetic System for Energy Harvesting and Adaptive Damping. *Sensors*. 2022; 22(3):1195.
https://doi.org/10.3390/s22031195

**Chicago/Turabian Style**

Lenkutis, Tadas, Darius Viržonis, Aurimas Čerškus, Andrius Dzedzickis, Nikolaj Šešok, and Vytautas Bučinskas.
2022. "An Automotive Ferrofluidic Electromagnetic System for Energy Harvesting and Adaptive Damping" *Sensors* 22, no. 3: 1195.
https://doi.org/10.3390/s22031195