Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features
Abstract
:1. Introduction
- 1.
- To design a new methodology for the automatic detection of bulbar involvement in males and females based on phonatory-subsystem and time-frequency features.
- 2.
- To obtain a set of statistically significant features for diagnosing bulbar involvement efficiently.
- 3.
- To analyze the performance of the most common supervised classification models to improve the diagnosis of bulbar involvement.
2. Methods
2.1. Participants
2.2. Vowel Recording
2.3. Phonatory-Subsystem Features
- Fundamental period cycle-to-cycle variation (Jitter(absolute), Equation (2)).
- Relative period (Jitter(relative), Equation (3)).
- Relative perturbation (Jitter(rap), Equation (4)).
- Five-point period perturbation quotient (Jitter(ppq5), Equation (5)).
- Variability of the peak-to-peak amplitude (Shimmer(dB), Equation (6)).
- Relative amplitudes of consecutive periods (Shimmer(relative), Equation (7)).
- Three-, five- and eleven-point amplitude perturbation (Shimmer(apqP), Equation (8)).
- Mean and standard deviation (HNR(mean) and HNR(SD)) of the harmonics-to-noise-ratio (HNR, Equation (9)).
- Mean, standard deviation, minimum and maximum value of the pitch (pitch(mean), pitch(SD), pitch(min) and pitch(max)). See [29] for more details about obtaining the pitch.
2.4. Time-Frequency Features
- Average instantaneous spectral energy (E(t), Equation (11)) for each frequency band (E_Bn1…E_Bn7).
- Instantaneous frequency peak (, Equation (12)) for each frequency band (f_Cres1 …f_Cres7).
- Average instantaneous frequency (, Equation (13)) of the spectrum for each frequency band (f_Med1…f_Med7).
2.5. Feature Selection
2.6. Classification Models
2.7. Model Validation Metrics
3. Results
3.1. Selecting the Significant Features
3.2. Classification Models
4. Discussion
4.1. Principal Findings
Comparison | Feature | p-Value |
---|---|---|
C vs. B | shimmer(dB) | 0.039 |
shimmer(apq11) | <0.001 | |
pitch(mean) | 0.001 | |
pitch(SD) | 0.023 | |
pitch(min) | 0.016 | |
pitch(max) | <0.001 | |
f_Cres2 | 0.046 | |
f_Cres6 | 0.046 | |
f_Med2 | <0.001 | |
f_Med6 | 0.008 | |
K | 0.027 | |
0.002 | ||
C vs. NB | jitter(relative) | 0.008 |
shimmer(dB) | 0.001 | |
shimmer(relative) | 0.008 | |
shimmer(apq3) | 0.035 | |
shimmer(apq11) | <0.001 | |
pitch(mean) | 0.001 | |
pitch(SD) | 0.002 | |
pitch(min) | 0.023 | |
pitch(max) | 0.001 | |
HNR(mean) | 0.037 | |
IE_Bn1 | 0.045 | |
H_tf | 0.015 | |
H_f | 0.045 | |
B vs. NB | f_Cres1 | 0.044 |
f_Cres2 | 0.028 | |
f_Med2 | <0.001 | |
f_Med6 | 0.011 | |
f_Med7 | 0.024 | |
H_tf | 0.009 | |
H_f | 0.009 | |
K | 0.045 | |
<0.001 | ||
C vs. A | jitter(relative) | 0.009 |
shimmer(dB) | 0.001 | |
shimmer(relative) | 0.009 | |
shimmer(apq3) | 0.044 | |
shimmer(apq11) | <0.001 | |
pitch(mean) | 0.001 | |
pitch(SD) | 0.002 | |
pitch(min) | 0.015 | |
pitch(max) | <0.001 | |
HNR(mean) | 0.046 | |
H_tf | 0.048 | |
0.034 |
Comparison | Feature | p-Value |
---|---|---|
C vs. B | jitter(relative) | 0.001 |
jitter(absolute) | <0.001 | |
jitter(rap) | <0.001 | |
jitter(ppq5) | <0.001 | |
shimmer(relative) | <0.001 | |
shimmer(dB) | <0.001 | |
shimmer(apq3) | <0.001 | |
shimmer(apq5) | <0.001 | |
shimmer(apq11) | <0.001 | |
pitch(mean) | <0.001 | |
pitch(SD) | <0.001 | |
pitch(max) | <0.001 | |
HNR(mean) | <0.001 | |
f_Cres2 | 0.004 | |
f_Cres6 | 0.029 | |
f_Cres7 | 0.020 | |
E_Bn2 | 0.003 | |
f_Med2 | <0.001 | |
f_Med6 | 0.013 | |
0.028 | ||
C vs. NB | jitter(absolute) | <0.001 |
shimmer(apq11) | <0.001 | |
pitch(mean) | <0.001 | |
pitch(SD) | 0.003 | |
pitch(min) | 0.008 | |
pitch(max) | <0.001 | |
f_Cres7 | 0.011 | |
E_Bn2 | 0.015 | |
f_Med1 | 0.014 | |
0.022 | ||
B vs. NB | jitter(relative) | <0.001 |
jitter(absolute) | <0.001 | |
jitter(rap) | <0.001 | |
jitter(ppq5) | <0.001 | |
shimmer(relative) | <0.001 | |
shimmer(dB) | <0.001 | |
shimmer(apq3) | <0.001 | |
shimmer(apq5) | <0.001 | |
shimmer(apq11) | <0.001 | |
pitch(SD) | <0.001 | |
pitch(max) | 0.029 | |
HNR(mean) | <0.001 | |
H_tf | 0.026 | |
H_f | 0.048 | |
C vs. A | jitter(relative) | <0.001 |
jitter(rap) | 0.001 | |
jitter(ppq5) | 0.004 | |
shimmer(relative) | <0.001 | |
shimmer(dB) | <0.001 | |
shimmer(apq3) | <0.001 | |
shimmer(apq5) | 0.001 | |
shimmer(apq11) | <0.001 | |
pitch(mean) | <0.001 | |
pitch(SD) | <0.001 | |
pitch(max) | <0.001 | |
HNR(mean) | 0.003 | |
f_Cres2 | 0.006 | |
f_Cres7 | 0.005 | |
E_Bn2 | 0.003 | |
f_Med1 | 0.049 | |
f_Med2 | 0.001 | |
f_Med7 | 0.049 | |
H_t | 0.039 | |
0.018 |
C vs. B | C vs. NB | B vs. NB | C vs. A | ||
---|---|---|---|---|---|
RF | Accuracy | 96.1 | 91.9 | 91.8 | 92.0 |
Sensitivity | 86.1 | 92.1 | 55.0 | 93.8 | |
Specificity | 97.5 | 91.0 | 97.5 | 87.0 | |
LR | Accuracy | 91.9 | 89.2 | 88.5 | 91.3 |
Sensitivity | 95.0 | 90.3 | 75.0 | 90.7 | |
Specificity | 92.0 | 86.9 | 89.5 | 94.0 | |
LDA | Accuracy | 95.0 | 91.1 | 81.3 | 92.0 |
Sensitivity | 85.0 | 88.6 | 90.0 | 90.7 | |
Specificity | 97.5 | 98.0 | 80.5 | 96.0 | |
NN | Accuracy | 95.0 | 90.0 | 86.1 | 92.0 |
Sensitivity | 90.0 | 91.3 | 75.0 | 91.5 | |
Specificity | 95.0 | 86.5 | 88.4 | 93.0 | |
SVM | Accuracy | 93.3 | 93.1 | 86.1 | 92.6 |
Sensitivity | 85.0 | 91.2 | 85.0 | 90.7 | |
Specificity | 95.0 | 98.0 | 86.7 | 98.0 |
4.2. Comparison with Prior Work
C vs. B | C vs. NB | B vs. NB | C vs. A | ||
---|---|---|---|---|---|
RF | Accuracy | 98.1 | 94.1 | 84.8 | 95.8 |
Sensitivity | 96.6 | 92.5 | 92.3 | 95.8 | |
Specificity | 100 | 95.5 | 75.0 | 96.0 | |
LR | Accuracy | 91.4 | 93.0 | 74.7 | 91.3 |
Sensitivity | 91.3 | 90.0 | 75.0 | 93.4 | |
Specificity | 91.5 | 95.5 | 75.0 | 87.0 | |
LDA | Accuracy | 93.1 | 90.4 | 72.1 | 90.7 |
Sensitivity | 87.6 | 82.5 | 70.0 | 87.3 | |
Specificity | 86.6 | 97.5 | 75.0 | 98.0 | |
NN | Accuracy | 93.2 | 86.9 | 71.1 | 90.6 |
Sensitivity | 93.3 | 85.0 | 72.3 | 93.6 | |
Specificity | 94.0 | 89.0 | 70.0 | 84.5 | |
SVM | Accuracy | 95.1 | 91.6 | 74.2 | 93.6 |
Sensitivity | 93.3 | 90.0 | 73.6 | 94.7 | |
Specificity | 97.5 | 93.0 | 75.0 | 91.5 |
4.3. Limitations
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
TFR | Time-frequency representation |
Jitter (absolute) | inter-cycle variation of the fundamental period |
Jitter(relative) | relative period |
Jitter(rap) | relative perturbation |
Jitter(ppq5) | five-point period perturbation quotient |
Shimmer(dB) | Variability of the peak-to-peak amplitude |
Shimmer(relative) | relative amplitudes of consecutive periods |
Shimmer(apqP) | three, five and eleven-point amplitude perturbation |
HNR | harmonics-to-noise ratio |
HNR(mean) | mean HNR |
HNR(SD) | standard deviation of HNR |
WD | Wigner distribution |
CWD | Choi-Williams exponential function |
pD | joint probability density distribution |
E(t) | average instantaneous spectral energy |
average instantaneous frequency | |
instantaneous frequency peak | |
H_t | instantaneous information entropy |
H_f | spectral information entropy |
H_tf | joint Shannon entropy |
IE(f) | spectral information |
K | kurtosis |
joint time-frequency moment | |
SVM | Support Vector Machine |
NN | Neural Networks |
LDA | Linear Discriminant Analysis |
LR | Linear Logistic Regression |
RF | Random Forest |
C | control group |
B | group of ALS participants diagnosed with bulbar involvement |
NB | group of ALS participants not diagnosed with bulbar involvement |
A | group of ALS participants with or without bulbar involvement |
References
- Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet 2011, 377, 942–955. [Google Scholar] [CrossRef] [Green Version]
- Tomik, B.; Guiloff, R. Dysarthria in amyotrophic lateral sclerosis: A review. Amyotroph. Lateral Scler. Off. Publ. World Fed. Neurol. Res. Group Mot. Neuron Dis. 2010, 11, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Shellikeri, S.; Green, J.R.; Kulkarni, M.; Rong, P.; Martino, R.; Zinman, L.; Yunusova, Y. Speech Movement Measures as Markers of Bulbar Disease in Amyotrophic Lateral Sclerosis. J. Speech Lang. Heart Res. JSLHR 2016, 59, 887–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Dickey, E.; Simmons, Z. Vowel-Specific Intelligibility and Acoustic Patterns in Individuals With Dysarthria Secondary to Amyotrophic Lateral Sclerosis. J. Speech Lang. Heart Res. 2019, 62, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.; McDonald, T.; Howard, F. The Otolaryngologic Presentation of Amyotrophic Lateral Sclerosis. Otolaryngology 1978, 86, ORL-479–ORL-484. [Google Scholar] [CrossRef]
- Tena, A.; Clarià, F.; Solsona, F.; Meister, E.; Povedano, M. Detection of Bulbar Involvement in Patients With Amyotrophic Lateral Sclerosis by Machine Learning Voice Analysis: Diagnostic Decision Support Development Study. JMIR Med. Inform. 2021, 9, e21331. [Google Scholar] [CrossRef]
- Silbergleit, A.K.; Johnson, A.F.; Jacobson, B.H. Acoustic analysis of voice in individuals with amyotrophic lateral sclerosis and perceptually normal vocal quality. J. Voice 1997, 11, 222–231. [Google Scholar] [CrossRef]
- Wang, J.; Kothalkar, P.V.; Heitzman, D. Towards Automatic Detection of Amyotrophic Lateral Sclerosis from Speech Acoustic and Articulatory Samples. In Proceedings of the InterSpeech, San Francisco, CA, USA, 8–12 September 2016. [Google Scholar]
- Chiaramonte, R.; Luciano, C.; Chiaramonte, I.; Serra, A.; Bonfiglio, M. Multi-disciplinary clinical protocol for the diagnosis of bulbar amyotrophic lateral sclerosis. Acta Otorrinolaringol. 2019, 70, 25–31. [Google Scholar] [CrossRef]
- Tomik, J.; Tomik, B.; Wiatr, M.; Skladzien, J.; Strek, P.; Szczudlik, A. The Evaluation of Abnormal Voice Qualities in Patients with Amyotrophic Lateral Sclerosis. Neuro-Degener. Dis. 2015, 15, 225–232. [Google Scholar] [CrossRef]
- Horwitz-Martin, R.L.; Horwitz-Martin, R.L.; Quatieri, T.F.; Lammert, A.C.; Williamson, J.R.; Yunusova, Y.; Godoy, E.; Mehta, D.D.; Green, J.R. Relation of automatically extracted formant trajectories with intelligibility loss and speaking rate decline in amyotrophic lateral sclerosis. In Proceedings of the InterSpeech, San Francisco, CA, USA, 8–12 September 2016; pp. 1205–1209. [Google Scholar]
- Spangler, T.; Vinodchandran, N.V.; Samal, A.; Green, J.R. Fractal features for automatic detection of dysarthria. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), Orland, FL, USA, 16–19 February 2017; pp. 437–440. [Google Scholar] [CrossRef]
- Suhas, B.; Patel, D.; Rao, N.; Belur, Y.; Reddy, P.; Atchayaram, N.; Yadav, R.; Gope, D.; Ghosh, P.K. Comparison of Speech Tasks and Recording Devices for Voice Based Automatic Classification of Healthy Subjects and Patients with Amyotrophic Lateral Sclerosis. In Proceedings of the Interspeech, Graz, Austria, 15–19 September 2019; pp. 4564–4568. [Google Scholar] [CrossRef] [Green Version]
- Melia, U.; Vallverdú, M.; Jospin, M.; Jensen, E.W.; Valencia, J.F.; Clariá, F.; Gambus, P.L.; Caminal, P. Prediction of nociceptive responses during sedation by time-frequency representation. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2547–2550. [Google Scholar] [CrossRef]
- Melia, U.; Claria, F.; Vallverdu, M.; Caminal, P. Measuring Instantaneous and Spectral Information Entropies by Shannon Entropy of Choi-Williams Distribution in the Context of Electroencephalography. Entropy 2014, 16, 2530–2548. [Google Scholar] [CrossRef] [Green Version]
- Claria, F.; Vallverdú, M.; Baranowski, R.; Chojnowska, L.; Caminal, P. Heart rate variability analysis based on time-frequency representation and entropies in hypertrophic cardiomyopathy patients. Physiol. Meas. 2008, 29, 401–416. [Google Scholar] [CrossRef]
- Clariá, F.; Vallverdú, M.; Riba, J.; Romero, S.; Barbanoj, M.J.; Caminal, P. Characterization of the cerebral activity by time-frequency representation of evoked EEG potentials. Physiol. Meas. 2011, 32, 1327–1346. [Google Scholar] [CrossRef] [PubMed]
- Tena, A.; Clarià, F.; Solsona, F. Automated detection of COVID-19 cough. Biomed. Signal Process. Control 2022, 71, 103175. [Google Scholar] [CrossRef] [PubMed]
- Mika, D.; Józwik, J. Advanced Time-Frequency Representation in Voice Signal Analysis. Adv. Sci. Technol. Res. J. 2018, 12, 251–259. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Z.; Zhang, W.; Meng, G. Parameterised time-frequency analysis methods and their engineering applications: A review of recent advances. Mech. Syst. Signal Process. 2019, 119, 182–221. [Google Scholar] [CrossRef]
- Davies, M.; Daudet, L. Sparse audio representations using the MCLT. Signal Process. 2006, 86, 457–470. [Google Scholar] [CrossRef]
- Makkonen, T.; Ruottinen, H.; Puhto, R.; Helminen, M.; Palmiol, J. Speech deterioration in amyotrophic lateral sclerosis (ALS) after manifestation of bulbar symptoms: Speech deterioration in ALS. Int. J. Lang. Commun. Disord. 2017, 53. [Google Scholar] [CrossRef] [Green Version]
- Tomik, B.; Krupinski, J.; Glodzik-Sobanska, L.; Bala-Slodowska, M.; Wszolek, W.; Kusiak, M.; Lechwacka, A. Acoustic analysis of dysarthria profile in ALS patients. J. Neurol. Sci. 1999, 169, 35–42. [Google Scholar] [CrossRef]
- Norel, R.; Pietrowicz, M.; Agurto, C.; Rishoni, S.; Cecchi, G. Detection of Amyotrophic Lateral Sclerosis (ALS) via Acoustic Analysis. bioRxiv 2018. [Google Scholar] [CrossRef]
- An, K.; Kim, M.; Teplansky, K.; Green, J.; Campbell, T.; Yunusova, Y.; Heitzman, D.; Wang, J. Automatic Early Detection of Amyotrophic Lateral Sclerosis from Intelligible Speech Using Convolutional Neural Networks. In Proceedings of the Interspeech, Hyderabad, India, 2–6 September 2018; pp. 1913–1917. [Google Scholar] [CrossRef] [Green Version]
- Gutz, S.E.; Wang, J.; Yunusova, Y.; Green, J.R. Early Identification of Speech Changes Due to Amyotrophic Lateral Sclerosis Using Machine Classification. In Proceedings of the Interspeech, Graz, Austria, 15–19 September 2019; pp. 604–608. [Google Scholar] [CrossRef] [Green Version]
- Audacity Manual. Available online: https://manual.audacityteam.org (accessed on 27 January 2022).
- Sprecher, A.; Olszewski, A.; Jiang, J.J.; Zhang, Y. Updating signal typing in voice: Addition of type 4 signals. J. Acoust. Soc. Am. 2010, 127, 3710–3716. [Google Scholar] [CrossRef] [Green Version]
- Boersma, P.; Weenink, D. Praat: Doing Phonetics by Computer, V6.1.01; Technical Report; University of Amsterdam: Amsterdam, The Netherlands, 2019. [Google Scholar]
- MATLAB. Version 9.9.0.1495850 (R2020b); The MathWorks Inc.: Natick, MA, USA, 2020. [Google Scholar]
- Loughlin, P. What are the time-frequency moments of a signal? Proc. SPIE Int. Soc. Opt. Eng. 2001, 4474, 35–44. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2021, 17, 168–192. [Google Scholar] [CrossRef]
- Vashkevich, M.; Petrovsky, A.; Rushkevich, Y. Bulbar ALS Detection Based on Analysis of Voice Perturbation and Vibrato. In Proceedings of the 2019 Signal Processing: Algorithms, Architectures, Arrangements and Applications (SPA), Poznan, Poland, 18–20 September 2019; pp. 267–272. [Google Scholar]
- Plowman, E.K.; Tabor, L.C.; Wymer, J.; Pattee, G. The evaluation of bulbar dysfunction in amyotrophic lateral sclerosis: Survey of clinical practice patterns in the United States. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Nowok, B.; Raab, G.M.; Dibben, C. synthpop: Bespoke Creation of Synthetic Data in R. J. Stat. Softw. 2016, 74, 1–26. [Google Scholar] [CrossRef] [Green Version]
Age | Sex | ALSFR-R | Bulbar | Bulbar Onset Symptoms |
---|---|---|---|---|
37 | F | 37 | NO | No Symptoms |
38 | M | 6 | YES | NA |
39 | M | 43 | NO | No Symptoms |
41 | M | 34 | NO | No Symptoms |
41 | M | 34 | NO | No Symptoms |
43 | F | 21 | YES | Dysphagia |
44 | F | 19 | NO | No Symptoms |
48 | F | 36 | NO | No Symptoms |
48 | F | 29 | YES | Dysphagia |
48 | M | 31 | NO | No Symptoms |
48 | M | 45 | NO | No Symptoms |
49 | M | NA | NO | No Symptoms |
50 | M | 39 | NO | No Symptoms |
52 | M | 43 | NO | No Symptoms |
52 | F | 27 | YES | Dysphagia |
52 | M | 33 | NO | No Symptoms |
53 | F | 29 | YES | Dysphagia/Dysarthria |
55 | M | 26 | NO | No Symptoms |
55 | M | 24 | NO | No Symptoms |
56 | M | 35 | NO | No Symptoms |
56 | M | 27 | NO | No Symptoms |
58 | F | 46 | YES | Dysarthria |
58 | M | 28 | YES | NA |
59 | F | 33 | YES | NA |
60 | M | 46 | YES | NA |
63 | M | 22 | NO | No Symptoms |
63 | M | 42 | NO | No Symptoms |
63 | M | NA | NO | No Symptoms |
65 | M | 24 | NO | No Symptoms |
66 | F | 41 | NO | No Symptoms |
67 | M | NA | NO | No Symptoms |
67 | F | 33 | YES | Dyspnoea |
68 | M | NA | NO | No Symptoms |
68 | F | 21 | NO | No Symptoms |
69 | M | 37 | NO | No Symptoms |
70 | F | 28 | YES | Dysphagia |
70 | F | 17 | NO | No Symptoms |
70 | M | 46 | NO | No Symptoms |
70 | M | 27 | NO | No Symptoms |
70 | F | 23 | YES | Dysphagia/Dysarthria |
71 | M | 39 | NO | No Symptoms |
71 | F | 32 | YES | Dysphagia |
72 | M | 30 | NO | No Symptoms |
72 | F | 38 | NO | No Symptoms |
76 | F | 30 | NO | No Symptoms |
81 | M | 36 | NO | No Symptoms |
81 | M | 28 | NO | No Symptoms |
84 | F | 30 | YES | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tena, A.; Clarià, F.; Solsona, F.; Povedano, M. Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features. Sensors 2022, 22, 1137. https://doi.org/10.3390/s22031137
Tena A, Clarià F, Solsona F, Povedano M. Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features. Sensors. 2022; 22(3):1137. https://doi.org/10.3390/s22031137
Chicago/Turabian StyleTena, Alberto, Francesc Clarià, Francesc Solsona, and Mònica Povedano. 2022. "Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features" Sensors 22, no. 3: 1137. https://doi.org/10.3390/s22031137
APA StyleTena, A., Clarià, F., Solsona, F., & Povedano, M. (2022). Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features. Sensors, 22(3), 1137. https://doi.org/10.3390/s22031137