Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of Nanoporous Graphene Oxide and Gold Nanoparticles (Au NPs)
2.3. Morphology Characterization of Sensor Materials
2.4. Fabrication of GO/NGO-Based QCM Chip Sensors and Gas Sensing Measurements
3. Results and Discussion
3.1. Characteristics Analysis of GO/NGO
3.2. Dynamic Responses of QCM (Bare and GO-Based) Sensor to Gas Vapors
3.3. Comparison of Sensing Characteristics between GO and NGO-Functionalized QCM Sensor
3.4. Sensing Performances of GO and NGO-Functionalized QCM Sensors for TMA Detection
3.5. Selectivity of GO and NGO-Functionalized QCM Sensors to Different Gases
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Zhu, L.; Zheng, C.; Wang, J. Nanoporous Functionalized WS2/MWCNTs Nanocomposite for Trimethylamine Detection Based on Quartz Crystal Microbalance Gas Sensor. ACS Appl. Mater. Interfaces 2021, 13, 41339–41350. [Google Scholar] [CrossRef] [PubMed]
- Rianjanu, A.; Aflaha, R.; Khamidy, N.I.; Djamal, M.; Triyana, K.; Wasisto, H.S. Room-temperature ppb-level trimethylamine gas sensors functionalized with citric acid-doped polyvinyl acetate nanofibrous mats. Mater. Adv. 2021, 2, 3705–3714. [Google Scholar] [CrossRef]
- Zhou, L.J.; Mi, Q.; Jin, Y.B.; Li, T.T.; Zhang, D.Z. Construction of MoO3/MoSe2 nanocomposite-based gas sensor for low detection limit trimethylamine sensing at room temperature. J. Mater. Sci. Mater. Electron. 2021, 32, 17301–17310. [Google Scholar] [CrossRef]
- Zhou, Q.A.; Zheng, C.Y.; Zhu, L.Y.; Wang, J. Tin sulfides heterostructure modified quartz crystal microbalance sensors with high sensitivity for hazardous trimethylamine gas. Sens. Actuators B Chem. 2022, 371, 132520. [Google Scholar] [CrossRef]
- Zhao, C.; Shen, J.B.; Xu, S.S.; Wei, J.; Liu, H.Q.; Xie, S.Q.; Pan, Y.J.; Zhao, Y.; Zhu, Y.H. Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Food Chem. 2022, 392, 133318. [Google Scholar] [CrossRef] [PubMed]
- Ghobad, B.P. Electrical Properties of the MOS Capacitor Hydrogen Sensor Based on the Ni/SiO2/Si Structure. J. Nanoelectron. Optoelectron. 2017, 2, 130–135. [Google Scholar] [CrossRef]
- Ghobad, B.P.; Leila, F.A.; Parisa, E. Performance of gas nanosensor in 1–4 per cent hydrogen concentration. Sens. Rev. 2019, 4, 622–628. [Google Scholar] [CrossRef]
- Park, S.H.; Kima, B.-Y.; Joa, Y.K.; Dai, Z.F.; Lee, J.-H. Chemiresistive trimethylamine sensor using monolayer SnO2 inverse opals decorated with Cr2O3 nanoclusters. Sens. Actuators B Chem. 2020, 309, 127805. [Google Scholar] [CrossRef]
- Yan, W.J.; Xu, H.S.; Ling, M.; Zhou, S.Y.; Qiu, T.; Deng, Y.J.; Zhao, Z.D.; Zhang, E. MOF-Derived Porous Hollow Co3O4@ZnO Cages for High-Performance MEMS Trimethylamine Sensors. ACS Sens. 2021, 6, 2613–2621. [Google Scholar] [CrossRef]
- Zhang, F.D.; Liu, K.W.; Li, H.L.; Cui, S.H.; Zhang, D.Z.; Zeng, J.B.; Yan, Z.F. MoO3 Nanorods Decorated by PbMoO4 Nanoparticles for Enhanced Trimethylamine Sensing Performances at Low Working Temperature. ACS Appl. Mater. Interfaces 2022, 14, 24610–24619. [Google Scholar] [CrossRef]
- Lv, R.Q.; Huang, X.Y.; Ye, W.T.; Aheto, J.H.; Xu, H.X.; Dai, C.X.; Tian, X.Y. Research on the reaction mechanism of colorimetric sensor array with characteristic volatile gases-TMA during fish storage. J. Food Process Eng. 2019, 42, 1. [Google Scholar] [CrossRef]
- Geetha, M.; Kallingal, N.; Sha, M.S.; Sadasivuni, K.K.; Sawali, M.; Alsaedi, F.; Morsy, H.; Ibrahim, M.; Ahmed, A.E.; Abuznad, R.; et al. Versatile inexpensive paper-based chemosensor to detects trimethylamine: A proof of concept. Sens. Actuators A Phys. 2022, 338, 113437. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, J.W.; Che, Z.J.; Qiu, S.B.; Wang, Y.X.; Yin, E.Q.; Li, H.B.; Liu, X.H. Non-destructive and Rapid Method for Monitoring Fish Freshness of Grass Carp Based on Printable Colorimetric Paper Sensor in Modified Atmosphere Packaging. Food Anal. Methods 2022, 15, 792–802. [Google Scholar] [CrossRef]
- Nie, W.; Chen, Y.; Zhang, H.; Liu, J.; Peng, Z.; Li, Y. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness. Anal. Bioanal. Chem. 2022, 414, 6017–6027. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, Y.T.; Wang, Y.; Zhang, Q.; Liu, X.Y.; Tang, Y.W.; Li, J.R. A Fluorescence Resonance Energy Transfer (FRET) Biosensor Based on Zinc Oxide (ZnO) and Porphyrin for the Detection of Trimethylamine in Aquatic Products. Food Anal. Methods 2019, 12, 1585–1593. [Google Scholar] [CrossRef]
- Leila, F.A. Influence of oxide film surface morphology and thickness on the properties of gas sensitive nanostructure sensor. Indian J. Pure Appl. Phys. (IJPAP) 2019, 57, 743–749. [Google Scholar]
- Prabhakar, P.K.; Srivastav, P.P.; Pathak, S.S. Kinetics of Total Volatile Basic Nitrogen and Trimethylamine Formation in Stored Rohu (Labeorohita) Fish. J. Aquat. Food Prod. Technol. 2019, 28, 452–464. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Bekhit, A.E.A.; Waller, M.; Bailes, K.L.; Kerr, M.J.; Hopkins, D.L. The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef. Meat Sci. 2021, 179, 108551. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Yu, F.; Zhang, X.; Xue, Y.; Xue, C. Hyperspectral Imaging and Chemometrics for Nondestructive Quantification of Total Volatile Basic Nitrogen in Pacific Oysters (Crassostrea gigas). Food Anal. Methods 2019, 12, 799–810. [Google Scholar] [CrossRef]
- Cao, L.; Huang, Z.; Wu, D.; Ruan, R.; Liu, Y. Rapid and nondestructive determination of qualities in vacuum-packaged catfish (Clarias leather) fillets during slurry ice storage. J. Food Process. Preserv. 2021, 45, e15262. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.C.; We, J.Q.; Lan, K.B.; Yan, S.C.; Chen, R.B.; Qin, G.X. High-performance olfactory receptor-derived peptide sensor for trimethylamine detection based on Steglich esterification reaction and native chemical ligation connection. Biosens. Bioelectron. 2022, 195, 113673. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Deng, F.F.; Xu, M.; Wang, J.; Wei, Z.B.; Wang, Y.W. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B Chem. 2018, 273, 498–504. [Google Scholar] [CrossRef]
- Cat, V.V.; Dinh, N.X.; Phan, V.N.; Tuan, L.A.; Nam, M.H.; Lam, V.D.; Dang, T.V.; Quy, N.V. Realization of graphene oxide nanosheets as a potential mass-type gas sensor for detecting NO2, SO2, CO, and NH3. Mater. Today Commun. 2020, 25, 101682. [Google Scholar] [CrossRef]
- Jayawardena, S.; Siriwardena, H.D.; Rajapakse, R.M.G.; Kubono, A.; Shimomura, M. Fabrication of a quartz crystal microbalance sensor based on graphene oxide/TiO2 composite for the detection of chemical vapors at room temperature. Appl. Surf. Sci. 2019, 493, 250–260. [Google Scholar] [CrossRef]
- Fauzi, F.; Rianjanub, A.; Santoso, I.; Triyana, K. Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials—A mini review. Sens. Actuators A Phys. 2021, 330, 112837. [Google Scholar] [CrossRef]
- Trajcheva, A.; Politakos, N.; P´erez, B.T.; Joseph, Y.; Gilev, B.J.; Tomovska, R. QCM nanocomposite gas sensors—Expanding the application of waterborne polymer composites based on graphene nanoribbon. Polymer 2021, 213, 123335. [Google Scholar] [CrossRef]
- Yun, Y.; Pan, M.; Fang, G.; Gu, Y.; Wen, W.; Xue, R.; Wang, S. An electrodeposited molecularly imprinted quartz crystal microbalance sensor sensitized with AuNPs and rGO material for highly selective and sensitive detection of amantadine. RSC Adv. 2018, 8, 6600. [Google Scholar] [CrossRef]
- Qu, C.; Zhao, P.; Wu, C.; Zhuang, Y.; Liu, J.; Li, W.; Liu, Z.; Liu, J. Electrospun PAN/PANI fiber film with abundant active sites for ultrasensitive trimethylamine detection. Sens. Actuators B Chem. 2021, 338, 129822. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, R.; Fan, G.; Li, G. Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors. Sens. Actuators B Chem. 2017, 243, 721–730. [Google Scholar] [CrossRef]
- Chen, E.X.; Fu, H.R.; Lin, R.; Tan, Y.X.; Zhang, J. Highly Selective and Sensitive Trimethylamine Gas Sensor Based on Cobalt Imidazolate Framework Material. ACS Appl. Mater. Interfaces 2014, 6, 22871–22875. [Google Scholar] [CrossRef]
- Thriumani, R.; Zakaria, A.; Omar, M.I.; Halim, F.A.B. An Initial Study on Oxidized Graphene-Coated QCM Based Gas Sensor for Cancer Related Volatile Sensing Application. Recent Innov. Chem. Eng. 2018, 11, 29–39. [Google Scholar] [CrossRef]
- Ho, C.Y.; Wu, Y.S. Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis. Appl. Surf. Sci. 2020, 510, 145257. [Google Scholar] [CrossRef]
- Sangeetha, M.; Madhan, D. Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method. Opt. Laser Technol. 2020, 127, 106193. [Google Scholar] [CrossRef]
- Hou, X.; Wang, Z.; Fan, G.; Ji, H.; Yi, S.; Li, T.; Wang, Y.; Zhang, Z.; Yuan, L.; Zhang, R.; et al. Hierarchical three-dimensional MoS2/GO hybrid nanostructures for triethylamine-sensing applications with high sensitivity and selectivity. Sens. Actuators B Chem. 2020, 317, 128236. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, Y.; Li, J.; Kong, Q.; Zhai, H.; Xu, R.; Yang, F.; Sun, X.; Guo, Y. A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens. Bioelectron. 2021, 194, 113601. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kang, D.J.; Eom, W.; Lee, H.; Han, T.H. Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy. Chem. Eng. J. 2022, 430, 132759. [Google Scholar] [CrossRef]
Parameter | Meaning | Unit |
---|---|---|
V | Volume of liquid absorbed | μL |
n | amount of substance | mol |
M | molecular weight of the analyte | g/mol |
density of the liquid sample | g/ml |
Sensor Type | Temperature Range | Sensing Parameter | Response Time | Recovery Time | Reference |
---|---|---|---|---|---|
QCM | RT | Frequency | 3 s | 15 s | This work |
QCM | RT | Frequency | 7 s | 20 s | [2] |
N-type Semiconductor | RT | Resistance | 12 s | 19 s | [3] |
Metal oxide semiconductors | 250 °C | Resistance | 3 s | 2 s | [9] |
Metal oxides | 133 °C | Resistance | 90 s | 6.8 min | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, G.; Qu, F.; Zhang, L.; Chen, S.; Bai, M.; Hu, M.; Lv, X.; Zhang, J.; Wang, Z.; Chen, W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. Sensors 2022, 22, 9939. https://doi.org/10.3390/s22249939
Qi G, Qu F, Zhang L, Chen S, Bai M, Hu M, Lv X, Zhang J, Wang Z, Chen W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. Sensors. 2022; 22(24):9939. https://doi.org/10.3390/s22249939
Chicago/Turabian StyleQi, Guangyu, Fangfang Qu, Lu Zhang, Shihao Chen, Mengyuan Bai, Mengjiao Hu, Xinyan Lv, Jinglei Zhang, Zhenhe Wang, and Wei Chen. 2022. "Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection" Sensors 22, no. 24: 9939. https://doi.org/10.3390/s22249939
APA StyleQi, G., Qu, F., Zhang, L., Chen, S., Bai, M., Hu, M., Lv, X., Zhang, J., Wang, Z., & Chen, W. (2022). Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. Sensors, 22(24), 9939. https://doi.org/10.3390/s22249939