Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of Nanoporous Graphene Oxide and Gold Nanoparticles (Au NPs)
2.3. Morphology Characterization of Sensor Materials
2.4. Fabrication of GO/NGO-Based QCM Chip Sensors and Gas Sensing Measurements
3. Results and Discussion
3.1. Characteristics Analysis of GO/NGO
3.2. Dynamic Responses of QCM (Bare and GO-Based) Sensor to Gas Vapors
3.3. Comparison of Sensing Characteristics between GO and NGO-Functionalized QCM Sensor
3.4. Sensing Performances of GO and NGO-Functionalized QCM Sensors for TMA Detection
3.5. Selectivity of GO and NGO-Functionalized QCM Sensors to Different Gases
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Zhu, L.; Zheng, C.; Wang, J. Nanoporous Functionalized WS2/MWCNTs Nanocomposite for Trimethylamine Detection Based on Quartz Crystal Microbalance Gas Sensor. ACS Appl. Mater. Interfaces 2021, 13, 41339–41350. [Google Scholar] [CrossRef] [PubMed]
- Rianjanu, A.; Aflaha, R.; Khamidy, N.I.; Djamal, M.; Triyana, K.; Wasisto, H.S. Room-temperature ppb-level trimethylamine gas sensors functionalized with citric acid-doped polyvinyl acetate nanofibrous mats. Mater. Adv. 2021, 2, 3705–3714. [Google Scholar] [CrossRef]
- Zhou, L.J.; Mi, Q.; Jin, Y.B.; Li, T.T.; Zhang, D.Z. Construction of MoO3/MoSe2 nanocomposite-based gas sensor for low detection limit trimethylamine sensing at room temperature. J. Mater. Sci. Mater. Electron. 2021, 32, 17301–17310. [Google Scholar] [CrossRef]
- Zhou, Q.A.; Zheng, C.Y.; Zhu, L.Y.; Wang, J. Tin sulfides heterostructure modified quartz crystal microbalance sensors with high sensitivity for hazardous trimethylamine gas. Sens. Actuators B Chem. 2022, 371, 132520. [Google Scholar] [CrossRef]
- Zhao, C.; Shen, J.B.; Xu, S.S.; Wei, J.; Liu, H.Q.; Xie, S.Q.; Pan, Y.J.; Zhao, Y.; Zhu, Y.H. Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Food Chem. 2022, 392, 133318. [Google Scholar] [CrossRef] [PubMed]
- Ghobad, B.P. Electrical Properties of the MOS Capacitor Hydrogen Sensor Based on the Ni/SiO2/Si Structure. J. Nanoelectron. Optoelectron. 2017, 2, 130–135. [Google Scholar] [CrossRef]
- Ghobad, B.P.; Leila, F.A.; Parisa, E. Performance of gas nanosensor in 1–4 per cent hydrogen concentration. Sens. Rev. 2019, 4, 622–628. [Google Scholar] [CrossRef]
- Park, S.H.; Kima, B.-Y.; Joa, Y.K.; Dai, Z.F.; Lee, J.-H. Chemiresistive trimethylamine sensor using monolayer SnO2 inverse opals decorated with Cr2O3 nanoclusters. Sens. Actuators B Chem. 2020, 309, 127805. [Google Scholar] [CrossRef]
- Yan, W.J.; Xu, H.S.; Ling, M.; Zhou, S.Y.; Qiu, T.; Deng, Y.J.; Zhao, Z.D.; Zhang, E. MOF-Derived Porous Hollow Co3O4@ZnO Cages for High-Performance MEMS Trimethylamine Sensors. ACS Sens. 2021, 6, 2613–2621. [Google Scholar] [CrossRef]
- Zhang, F.D.; Liu, K.W.; Li, H.L.; Cui, S.H.; Zhang, D.Z.; Zeng, J.B.; Yan, Z.F. MoO3 Nanorods Decorated by PbMoO4 Nanoparticles for Enhanced Trimethylamine Sensing Performances at Low Working Temperature. ACS Appl. Mater. Interfaces 2022, 14, 24610–24619. [Google Scholar] [CrossRef]
- Lv, R.Q.; Huang, X.Y.; Ye, W.T.; Aheto, J.H.; Xu, H.X.; Dai, C.X.; Tian, X.Y. Research on the reaction mechanism of colorimetric sensor array with characteristic volatile gases-TMA during fish storage. J. Food Process Eng. 2019, 42, 1. [Google Scholar] [CrossRef]
- Geetha, M.; Kallingal, N.; Sha, M.S.; Sadasivuni, K.K.; Sawali, M.; Alsaedi, F.; Morsy, H.; Ibrahim, M.; Ahmed, A.E.; Abuznad, R.; et al. Versatile inexpensive paper-based chemosensor to detects trimethylamine: A proof of concept. Sens. Actuators A Phys. 2022, 338, 113437. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, J.W.; Che, Z.J.; Qiu, S.B.; Wang, Y.X.; Yin, E.Q.; Li, H.B.; Liu, X.H. Non-destructive and Rapid Method for Monitoring Fish Freshness of Grass Carp Based on Printable Colorimetric Paper Sensor in Modified Atmosphere Packaging. Food Anal. Methods 2022, 15, 792–802. [Google Scholar] [CrossRef]
- Nie, W.; Chen, Y.; Zhang, H.; Liu, J.; Peng, Z.; Li, Y. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness. Anal. Bioanal. Chem. 2022, 414, 6017–6027. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, Y.T.; Wang, Y.; Zhang, Q.; Liu, X.Y.; Tang, Y.W.; Li, J.R. A Fluorescence Resonance Energy Transfer (FRET) Biosensor Based on Zinc Oxide (ZnO) and Porphyrin for the Detection of Trimethylamine in Aquatic Products. Food Anal. Methods 2019, 12, 1585–1593. [Google Scholar] [CrossRef]
- Leila, F.A. Influence of oxide film surface morphology and thickness on the properties of gas sensitive nanostructure sensor. Indian J. Pure Appl. Phys. (IJPAP) 2019, 57, 743–749. [Google Scholar]
- Prabhakar, P.K.; Srivastav, P.P.; Pathak, S.S. Kinetics of Total Volatile Basic Nitrogen and Trimethylamine Formation in Stored Rohu (Labeorohita) Fish. J. Aquat. Food Prod. Technol. 2019, 28, 452–464. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Bekhit, A.E.A.; Waller, M.; Bailes, K.L.; Kerr, M.J.; Hopkins, D.L. The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef. Meat Sci. 2021, 179, 108551. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Yu, F.; Zhang, X.; Xue, Y.; Xue, C. Hyperspectral Imaging and Chemometrics for Nondestructive Quantification of Total Volatile Basic Nitrogen in Pacific Oysters (Crassostrea gigas). Food Anal. Methods 2019, 12, 799–810. [Google Scholar] [CrossRef]
- Cao, L.; Huang, Z.; Wu, D.; Ruan, R.; Liu, Y. Rapid and nondestructive determination of qualities in vacuum-packaged catfish (Clarias leather) fillets during slurry ice storage. J. Food Process. Preserv. 2021, 45, e15262. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.C.; We, J.Q.; Lan, K.B.; Yan, S.C.; Chen, R.B.; Qin, G.X. High-performance olfactory receptor-derived peptide sensor for trimethylamine detection based on Steglich esterification reaction and native chemical ligation connection. Biosens. Bioelectron. 2022, 195, 113673. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Deng, F.F.; Xu, M.; Wang, J.; Wei, Z.B.; Wang, Y.W. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B Chem. 2018, 273, 498–504. [Google Scholar] [CrossRef]
- Cat, V.V.; Dinh, N.X.; Phan, V.N.; Tuan, L.A.; Nam, M.H.; Lam, V.D.; Dang, T.V.; Quy, N.V. Realization of graphene oxide nanosheets as a potential mass-type gas sensor for detecting NO2, SO2, CO, and NH3. Mater. Today Commun. 2020, 25, 101682. [Google Scholar] [CrossRef]
- Jayawardena, S.; Siriwardena, H.D.; Rajapakse, R.M.G.; Kubono, A.; Shimomura, M. Fabrication of a quartz crystal microbalance sensor based on graphene oxide/TiO2 composite for the detection of chemical vapors at room temperature. Appl. Surf. Sci. 2019, 493, 250–260. [Google Scholar] [CrossRef]
- Fauzi, F.; Rianjanub, A.; Santoso, I.; Triyana, K. Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials—A mini review. Sens. Actuators A Phys. 2021, 330, 112837. [Google Scholar] [CrossRef]
- Trajcheva, A.; Politakos, N.; P´erez, B.T.; Joseph, Y.; Gilev, B.J.; Tomovska, R. QCM nanocomposite gas sensors—Expanding the application of waterborne polymer composites based on graphene nanoribbon. Polymer 2021, 213, 123335. [Google Scholar] [CrossRef]
- Yun, Y.; Pan, M.; Fang, G.; Gu, Y.; Wen, W.; Xue, R.; Wang, S. An electrodeposited molecularly imprinted quartz crystal microbalance sensor sensitized with AuNPs and rGO material for highly selective and sensitive detection of amantadine. RSC Adv. 2018, 8, 6600. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Zhao, P.; Wu, C.; Zhuang, Y.; Liu, J.; Li, W.; Liu, Z.; Liu, J. Electrospun PAN/PANI fiber film with abundant active sites for ultrasensitive trimethylamine detection. Sens. Actuators B Chem. 2021, 338, 129822. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, R.; Fan, G.; Li, G. Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors. Sens. Actuators B Chem. 2017, 243, 721–730. [Google Scholar] [CrossRef]
- Chen, E.X.; Fu, H.R.; Lin, R.; Tan, Y.X.; Zhang, J. Highly Selective and Sensitive Trimethylamine Gas Sensor Based on Cobalt Imidazolate Framework Material. ACS Appl. Mater. Interfaces 2014, 6, 22871–22875. [Google Scholar] [CrossRef]
- Thriumani, R.; Zakaria, A.; Omar, M.I.; Halim, F.A.B. An Initial Study on Oxidized Graphene-Coated QCM Based Gas Sensor for Cancer Related Volatile Sensing Application. Recent Innov. Chem. Eng. 2018, 11, 29–39. [Google Scholar] [CrossRef]
- Ho, C.Y.; Wu, Y.S. Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis. Appl. Surf. Sci. 2020, 510, 145257. [Google Scholar] [CrossRef]
- Sangeetha, M.; Madhan, D. Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method. Opt. Laser Technol. 2020, 127, 106193. [Google Scholar] [CrossRef]
- Hou, X.; Wang, Z.; Fan, G.; Ji, H.; Yi, S.; Li, T.; Wang, Y.; Zhang, Z.; Yuan, L.; Zhang, R.; et al. Hierarchical three-dimensional MoS2/GO hybrid nanostructures for triethylamine-sensing applications with high sensitivity and selectivity. Sens. Actuators B Chem. 2020, 317, 128236. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, Y.; Li, J.; Kong, Q.; Zhai, H.; Xu, R.; Yang, F.; Sun, X.; Guo, Y. A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens. Bioelectron. 2021, 194, 113601. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kang, D.J.; Eom, W.; Lee, H.; Han, T.H. Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy. Chem. Eng. J. 2022, 430, 132759. [Google Scholar] [CrossRef]
Parameter | Meaning | Unit |
---|---|---|
V | Volume of liquid absorbed | μL |
n | amount of substance | mol |
M | molecular weight of the analyte | g/mol |
density of the liquid sample | g/ml |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, G.; Qu, F.; Zhang, L.; Chen, S.; Bai, M.; Hu, M.; Lv, X.; Zhang, J.; Wang, Z.; Chen, W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. Sensors 2022, 22, 9939. https://doi.org/10.3390/s22249939
Qi G, Qu F, Zhang L, Chen S, Bai M, Hu M, Lv X, Zhang J, Wang Z, Chen W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. Sensors. 2022; 22(24):9939. https://doi.org/10.3390/s22249939
Chicago/Turabian StyleQi, Guangyu, Fangfang Qu, Lu Zhang, Shihao Chen, Mengyuan Bai, Mengjiao Hu, Xinyan Lv, Jinglei Zhang, Zhenhe Wang, and Wei Chen. 2022. "Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection" Sensors 22, no. 24: 9939. https://doi.org/10.3390/s22249939