A Novel Adaptive Sensor Fault Estimation Algorithm in Robust Fault Diagnosis
Abstract
:1. Introduction
2. Preliminaries
3. Fault Estimation
- 1.
- h(·) is Lipschitz with respect to their arguments with Lipschitz constant , i.e.,
- 2.
- For all , there exist functions and constants and such that, for each
- I.
- Off-line stage:
- II.
- On-line stage:
4. Exemplary Results
4.1. Case Study
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
Symbols | |
k | discrete time |
n | number of states |
m | number of outputs |
r | number of inputs |
number of sensor faults | |
number of disturbance inputs | |
number of noise inputs | |
xk | state of the system |
state estimate | |
uk | control input |
yk | output of the system |
process uncertainty vector | |
measurement uncertainty vector | |
h(xk) | nonlinear function with respect to |
sensor fault | |
sensor fault estimate | |
output estimate | |
ek | state estimation error |
es,k | sensor fault estimation error |
extended estimation error vector composed of ek and | |
extended uncertainty vector composed of , and | |
A, B, C | system matrices |
f | fault distribution matrix |
W1, W2 | process and measurement uncertainties matrices |
Kx, Ks | state and sensor fault gain matrices |
(semi-) positive definite matrix | |
FTC | fault-tolerant control |
LMI | linear matrix inequality |
LPV | linear parameter varying |
MT | multi-tank |
PI | proportional–integral |
PWM | pulse width modulation |
References
- Blanke, M.; Schröder, J.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Isermann, R. Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Chen, L.; Shi, F.; Patton, R. Active FTC for hydraulic pitch system for an off-shore wind turbine. In Proceedings of the Control and Fault-Tolerant Systems (SysTol), Nice, France, 9–11 October 2013; pp. 510–515. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, B.; Wang, Y. Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains. ISA Trans. 2020, 99, 488–495. [Google Scholar] [CrossRef]
- Ducard, G. Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mahmoud, M.; Jiang, J.; Zhang, Y. Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Noura, H.; Theilliol, D.; Ponsart, J.; Chamseddine, A. Fault-Tolerant Control Systems: Design and Practical Applications; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Chen, F.; Niu, J.; Jiang, G. Nonlinear Fault-Tolerant Control for Hypersonic Flight Vehicle With Multi-Sensor Faults. IEEE Access 2018, 6, 25427–25436. [Google Scholar] [CrossRef]
- Gao, Z.; Ding, S. Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 2007, 43, 912–920. [Google Scholar] [CrossRef]
- Dey, S.; Mohon, S.; Pisu, P.; Ayalew, B. Sensor fault detection, isolation, and estimation in lithium-ion batteries. IEEE Trans. Control. Syst. Technol. 2016, 24, 2141–2149. [Google Scholar] [CrossRef]
- Rodrigues, M.; Hamdi, H.; Theilliol, D.; Mechmeche, C.; BenHadj Braiek, N. Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems. Int. J. Robust Nonlinear Control. 2015, 25, 673–688. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Park, J.; Fan, Q. Adaptive robust actuator fault compensation for linear systems using a novel fault estimation mechanism. Int. J. Robust Nonlinear Control. 2016, 26, 1597–1614. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 2008, 32, 229–252. [Google Scholar] [CrossRef]
- Liang, D.; Yang, Y.; Li, R.; Liu, R. Finite-frequency H-/ unknown input observer-based distributed fault detection for multi-agent systems. J. Frankl. Inst. 2021, 358, 3258–3275. [Google Scholar] [CrossRef]
- Khan, A.S.; Khan, A.Q.; Iqbal, N.; Mustafa, G.; Abbasi, M.A.; Mahmood, A. Design of a computationally efficient observer-based distributed fault detection and isolation scheme in second-order networked control systems. ISA Trans. 2022, 128, 229–241. [Google Scholar] [CrossRef]
- Youssef, T.; Chadli, M.; Karimi, H.; Wang, R. Actuator and sensor faults estimation based on proportional integral observer for TS fuzzy model. J. Frankl. Inst. 2017, 354, 2524–2542. [Google Scholar] [CrossRef]
- Lan, J.; Patton, R. A new strategy for integration of fault estimation within fault-tolerant control. Automatica 2016, 69, 48–59. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Zhang, A. Robust Fault Tolerant Control for Discrete-Time Dynamic Systems With Applications to Aero Engineering Systems. IEEE Access 2018, 6, 18832–18847. [Google Scholar] [CrossRef]
- Chaves, E.; André, F.; Maitelli, A. Robust Observer-Based Actuator and Sensor Fault Estimation for Discrete-Time Systems. J. Control. Autom. Electr. Syst. 2019, 30, 160–169. [Google Scholar] [CrossRef]
- Liu, M.; Cao, X.; Shi, P. Fuzzy-model-based fault-tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults. IEEE Trans. Fuzzy Syst. 2013, 21, 789–799. [Google Scholar] [CrossRef]
- Gu, Y.; Yang, G. Simultaneous actuator and sensor fault estimation for discrete-time Lipschitz nonlinear systems in finite-frequency domain. Optim. Control. Appl. Methods 2018, 39, 410–423. [Google Scholar] [CrossRef]
- Li, J.; Huang, S.J. Integrated observer based fault estimation for a class of Lipschitz nonlinear systems. Int. J. Robust Nonlinear Control. 2020, 30, 5678–5692. [Google Scholar] [CrossRef]
- Cheng, P.; Cai, C.; Liu, J.J.; Song, X. Integrated fault estimation and fault tolerant control for a class of uncertain Lipschitz systems with time-delays in finite frequency domain. J. Frankl. Inst. 2021, 358, 7714–7739. [Google Scholar] [CrossRef]
- Abdollahi, M. Simultaneous sensor and actuator fault detection, isolation and estimation of nonlinear Euler–Lagrange systems using sliding mode observers. In Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, 21–24 August 2018; pp. 392–397. [Google Scholar]
- Hmidi, R.; Brahim, A.; Hmida, F.; Sellami, A. Robust fault tolerant control for Lipschitz nonlinear systems with simultaneous actuator and sensor faults. In Proceedings of the 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 22–25 March 2018; pp. 277–283. [Google Scholar]
- Hmidi, R.; Ben Brahim, A.; Dhahri, S.; Ben Hmida, F.; Sellami, A. Sliding mode fault-tolerant control for Takagi-Sugeno fuzzy systems with local nonlinear models: Application to inverted pendulum and cart system. Trans. Inst. Meas. Control. 2021, 43, 975–990. [Google Scholar] [CrossRef]
- Bounemeur, A.; Chemachema, M.; Essounbouli, N. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures. ISA Trans. 2018, 79, 45–61. [Google Scholar] [CrossRef]
- Garbouj, Y.; Dinh, T.N.; Raissi, T.; Zouari, T.; Ksouri, M. Optimal interval observer for switched Takagi–Sugeno systems: An application to interval fault estimation. IEEE Trans. Fuzzy Syst. 2020, 29, 2296–2309. [Google Scholar] [CrossRef]
- Fu, S.; Qiu, J.; Chen, L.; Mou, S. Adaptive fuzzy observer design for a class of switched nonlinear systems with actuator and sensor faults. IEEE Trans. Fuzzy Syst. 2018, 26, 3730–3742. [Google Scholar] [CrossRef]
- Shaker, M. Hybrid approach to design Takagi-Sugeno observer-based FTC for non-linear systems affected by simultaneous time varying actuator and sensor faults. Iet Control. Theory Appl. 2019, 13, 632–641. [Google Scholar] [CrossRef]
- Brizuela Mendoza, J.; Sorcia Vázquez, F.; Guzmán Valdivia, C.; Osorio Sánchez, R.; Martínez García, M. Observer design for sensor and actuator fault estimation applied to polynomial LPV systems: A riderless bicycle study case. Int. J. Syst. Sci. 2018, 49, 2996–3006. [Google Scholar] [CrossRef]
- Li, X.; Ahn, C.; Lu, D.; Guo, S. Robust simultaneous fault estimation and nonfragile output feedback fault-tolerant control for Markovian jump systems. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 49, 1769–1776. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z. Data-driven model-free adaptive fault-tolerant control for a class of discrete-time systems. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 154–158. [Google Scholar] [CrossRef]
- Salazar, J.; Sanjuan, G.; Nejjari, F.; Sarrate, R. Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability. Int. J. Appl. Math. Comput. Sci. 2020, 30, 47–59. [Google Scholar]
- Khalil, H.K.; Praly, L. High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control. 2014, 24, 993–1015. [Google Scholar] [CrossRef]
- Yin, S.; Yang, H.; Kaynak, O. Sliding mode observer-based FTC for Markovian jump systems with actuator and sensor faults. IEEE Trans. Autom. Control. 2017, 62, 3551–3558. [Google Scholar] [CrossRef]
- Foo, G.H.B.; Zhang, X.; Vilathgamuwa, D.M. A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter. IEEE Trans. Ind. Electron. 2013, 60, 3485–3495. [Google Scholar] [CrossRef]
- Honarmand-Shazilehei, F.; Pariz, N.; Sistani, M.B.N. Sensor fault detection in a class of nonlinear systems using modal Kalman filter. ISA Trans. 2020, 107, 214–223. [Google Scholar] [CrossRef]
- Stetter, R.; Witczak, M.; Pazera, M. Virtual diagnostic sensors design for an automated guided vehicle. Appl. Sci. 2018, 8, 702. [Google Scholar] [CrossRef] [Green Version]
- Witczak, M.; Buciakowski, M.; Mrugalski, M. An H infinity approach to fault estimation of non-linear systems: Application to one-link manipulator. In Proceedings of the Methods and Models in Automation and Robotics-MMAR, Miedzyzdroje, Poland, 2–5 September 2014; pp. 456–461. [Google Scholar]
- Chen, J.; Patton, R.J. Robust Model Based Fault Diagnosis for Dynamic Systems.; Kluwer Academic Publishers: London, UK, 1999. [Google Scholar]
- Pazera, M.; Buciakowski, M.; Witczak, M. Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system. Int. J. Appl. Math. Comput. Sci. 2018, 28, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Kukurowski, N.; Mrugalski, M.; Pazera, M.; Witczak, M. Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding. Int. J. Appl. Math. Comput. Sci. 2022, 32, 171–183. [Google Scholar]
- Khebbache, H.; Tadjine, M.; Labiod, S.; Boulkroune, A. Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems. ISA Trans. 2015, 55, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Li, H.; Zhang, Y.; Chen, X. Robust observer-based sensor fault reconstruction for discrete-time systems via a descriptor system approach. Int. J. Control. Autom. Syst. 2015, 13, 274–283. [Google Scholar] [CrossRef]
- Witczak, M.; Pazera, M.; Puig, V.; Mrugalski, M. Robust Time-Varying Sensor Bias Estimation for Bounded-Error Systems: Application to the Wind Turbine Benchmark. In Proceedings of the 2018 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia, 19–22 June 2018; pp. 1–9. [Google Scholar]
- Zemouche, A.; Boutayeb, M. On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica 2013, 49, 585–591. [Google Scholar] [CrossRef]
- INTECO. Multitank System-User’s Manual; INTECO: San Pedro, Costa Rica, 2013; Available online: www.inteco.com.pl (accessed on 13 May 2019).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazera, M.; Witczak, M. A Novel Adaptive Sensor Fault Estimation Algorithm in Robust Fault Diagnosis. Sensors 2022, 22, 9638. https://doi.org/10.3390/s22249638
Pazera M, Witczak M. A Novel Adaptive Sensor Fault Estimation Algorithm in Robust Fault Diagnosis. Sensors. 2022; 22(24):9638. https://doi.org/10.3390/s22249638
Chicago/Turabian StylePazera, Marcin, and Marcin Witczak. 2022. "A Novel Adaptive Sensor Fault Estimation Algorithm in Robust Fault Diagnosis" Sensors 22, no. 24: 9638. https://doi.org/10.3390/s22249638
APA StylePazera, M., & Witczak, M. (2022). A Novel Adaptive Sensor Fault Estimation Algorithm in Robust Fault Diagnosis. Sensors, 22(24), 9638. https://doi.org/10.3390/s22249638