Application of Combined Local and Global Optimization Algorithms in Joint Interpretation of Direct Current Resistivity and Seismic Refraction Data: A Case Study of Dammam Dome, Eastern Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geology of Study Area
2.2. Geophysical Data Acquisition and Quality Control
2.3. Optimization Principle
2.3.1. Local Optimization Principle
2.3.2. Global Optimization Principle
3. Results
3.1. Profile 1
3.2. Profile 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. A Template of the Combined Application in Seismic and Geoelectrical Tomograhy
References
- Reynolds, J. An Introduction to Applied and Environmental Geophysics, 2nd ed.; Willey-Blackwell: Hoboken, NJ, USA, 2011; ISBN 978-0-471-48535-3. [Google Scholar]
- Anderson, N.; Ismail, A. A generalized protocol for selecting appropriate geophysical techniques. In Proceedings of the Geophysical Technologies for Detecting Underground Coal Mine Voids Forum, Lexington, KY, USA, 20–30 July 2013; pp. 28–30. [Google Scholar]
- Hariri, M.M. Fractures system within Dammam Dome and its relationship to the doming process, Eastern Saudi Arabia. Arab. J. Geosci. 2014, 7, 4943–4956. [Google Scholar] [CrossRef]
- Weijermars, R. Surface Geology, Lithostratigraphy and Tertiary Growth of the Dammam Dome, Saudi Arabia: A New Field Guide. GeoArabia 1999, 4, 199–226. [Google Scholar] [CrossRef]
- Tranos, M.D.; Osman, M.S. Rus detachment in Dammam Dome, Eastern Saudi Arabia: A new soft-sediment structure as a ‘sensitive stress sensor’ for the Zagros collision. Geol. Mag. 2021, 1–13. [Google Scholar] [CrossRef]
- Steineke, M.; Harriss, T.; Parsons, K.; Berg, E. Geographic Map of the Western Persian Gulf Quadrangle, Kingdom of Saudi Arabia; US Geological Survey: Washington, DC, USA, 1958.
- Tleel, J.W. Surface Geology of Dammam Dome, Eastern Province, Saudi Arabia. Am. Assoc. Pet. Geol. Bull. 1973, 57, 558–576. [Google Scholar] [CrossRef]
- Hariri, M.; Abdullatif, O. Use of the GIS delineate lineaments from Landsat images, Dammam Dome, Eastern Saudi Arabia. In Proceedings of the XXII International Cartographic Conference (ICC2005), A Coruña, Spain, 9–16 July 2005. [Google Scholar]
- Al-fahmi, M. Fractures of the Dammam Dome Carbonate Outcrops: Their Characterization, Development, and Implications for Subsurface Reservoirs. Master’s Thesis, University of Massachusetts, Amherst, MA, USA, 2012. [Google Scholar]
- Oldenburg, D.W.; Li, Y. Inversion for Applied Geophysics: A Tutorial. In Near-Surface Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 2005; pp. 89–150. [Google Scholar]
- Gallardo, L.A.; Meju, M.A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 2003, 30, 1658. [Google Scholar] [CrossRef]
- Linde, N.; Binley, A.; Tryggvason, A.; Pedersen, L.B.; Revil, A. Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resour. Res. 2006, 42, W12404. [Google Scholar] [CrossRef] [Green Version]
- Infante, V.; Gallardo, L.A.; Montalvo-Arrieta, J.C.; Navarro de León, I. Lithological classification assisted by the joint inversion of electrical and seismic data at a control site in northeast Mexico. J. Appl. Geophys. 2010, 70, 93–102. [Google Scholar] [CrossRef]
- Moorkamp, M.; Heincke, B.; Jegen, M.; Roberts, A.W.; Hobbs, R.W. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys. J. Int. 2011, 184, 477–493. [Google Scholar] [CrossRef]
- Bennington, N.L.; Zhang, H.; Thurber, C.H.; Bedrosian, P.A. Joint Inversion of Seismic and Magnetotelluric Data in the Parkfield Region of California Using the Normalized Cross-Gradient Constraint. Pure Appl. Geophys. 2015, 172, 1033–1052. [Google Scholar] [CrossRef]
- Demirci, İ.; Candansayar, M.E.; Vafidis, A.; Soupios, P. Two dimensional joint inversion of direct current resistivity, radio-magnetotelluric and seismic refraction data: An application from Bafra Plain, Turkey. J. Appl. Geophys. 2017, 139, 316–330. [Google Scholar] [CrossRef]
- Demirci, İ.; Dikmen, Ü.; Candansayar, M.E. Two-dimensional joint inversion of Magnetotelluric and local earthquake data: Discussion on the contribution to the solution of deep subsurface structures. Phys. Earth Planet. Inter. 2018, 275, 56–68. [Google Scholar] [CrossRef]
- Autio, U.; Smirnov, M.Y.; Savvaidis, A.; Soupios, P.; Bastani, M. Combining electromagnetic measurements in the Mygdonian sedimentary basin, Greece. J. Appl. Geophys. 2016, 135, 261–269. [Google Scholar] [CrossRef]
- Wang, K.-P.; Tan, H.-D.; Wang, T. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory. Appl. Geophys. 2017, 14, 279–290. [Google Scholar] [CrossRef]
- Shahrukh, M.; Soupios, P.; Papadopoulos, N.; Sarris, A. Geophysical investigations at the Istron archaeological site, eastern Crete, Greece using seismic refraction and electrical resistivity tomography. J. Geophys. Eng. 2012, 9, 749–760. [Google Scholar] [CrossRef]
- Vafidis, A.; Soupios, P.; Economou, N.; Hamdan, H.; Andronikidis, N.; Kritikakis, G.; Panagopoulos, G.; Manoutsoglou, E.; Steiakakis, M.; Candansayar, E.; et al. Seawater intrusion imaging at Tybaki, Crete, using geophysical data and joint inversion of electrical and seismic data. First Break 2014, 32. [Google Scholar] [CrossRef]
- Demirci, İ.; Gündoğdu, N.Y.; Candansayar, M.E.; Soupios, P.; Vafidis, A.; Arslan, H. Determination and Evaluation of Saltwater Intrusion on Bafra Plain: Joint Interpretation of Geophysical, Hydrogeological and Hydrochemical Data. Pure Appl. Geophys. 2020, 177, 5621–5640. [Google Scholar] [CrossRef]
- Ahmad, M.; Hu, J.-L.; Hadzima-Nyarko, M.; Ahmad, F.; Tang, X.-W.; Rahman, Z.U.; Nawaz, A.; Abrar, M. Rockburst Hazard Prediction in Underground Projects Using Two Intelligent Classification Techniques: A Comparative Study. Symmetry 2021, 13, 632. [Google Scholar] [CrossRef]
- Ahmad, M.; Katman, H.Y.; Al-Mansob, R.A.; Ahmad, F.; Safdar, M.; Alguno, A.C. Prediction of Rockburst Intensity Grade in Deep Underground Excavation Using Adaptive Boosting Classifier. Complexity 2022, 2022, 6156210. [Google Scholar] [CrossRef]
- Chunduru, R.K.; Sen, M.K.; Stoffa, P.L. Hybrid optimization methods for geophysical inversion. Geophysics 1997, 62, 1196–1207. [Google Scholar] [CrossRef]
- Soupios, P.; Akca, I.; Mpogiatzis, P.; Basokur, A.T.; Papazachos, C. Applications of hybrid genetic algorithms in seismic tomography. J. Appl. Geophys. 2011, 75, 479–489. [Google Scholar] [CrossRef]
- Liu, S.; Liang, M.; Hu, X. Particle swarm optimization inversion of magnetic data: Field examples from iron ore deposits in China. Geophysics 2018, 83, J43–J59. [Google Scholar] [CrossRef]
- Rani, P.; Piegari, E.; Di Maio, R.; Vitagliano, E.; Soupios, P.; Milano, L. Monitoring time evolution of self-potential anomaly sources by a new global optimization approach. Application to organic contaminant transport. J. Hydrol. 2019, 575, 955–964. [Google Scholar] [CrossRef]
- Ayani, M.; MacGregor, L.; Mallick, S. Inversion of marine controlled source electromagnetic data using a parallel non-dominated sorting genetic algorithm. Geophys. J. Int. 2020, 220, 1066–1077. [Google Scholar] [CrossRef]
- Akca, İ.; Günther, T.; Müller-Petke, M.; Başokur, A.T.; Yaramanci, U. Joint parameter estimation from magnetic resonance and vertical electric soundings using a multi-objective genetic algorithm. Geophys. Prospect. 2014, 62, 364–376. [Google Scholar] [CrossRef]
- Ekinci, Y.L.; Balkaya, Ç.; Göktürkler, G. Backtracking Search Optimization: A Novel Global Optimization Algorithm for the Inversion of Gravity Anomalies. Pure Appl. Geophys. 2021, 178, 4507–4527. [Google Scholar] [CrossRef]
- Ramillien, G. Genetic algorithms for geophysical parameter inversion from altimeter data. Geophys. J. Int. 2001, 147, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.W.; Tan, H.D.; Peng, M.; Kong, W.X.; Wu, P. Three-dimensional joint inversion of gravity, magnetic and magnetotelluric data based on cross-gradient theory. Chin. J. Geophys. 2020, 63, 736–752. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.; Tan, Y. 2-D MT inversion using genetic algorithm. J. Phys. Conf. Ser. 2005, 12, 165–170. [Google Scholar] [CrossRef]
- Sen, M.K.; Stoffa, P.L. Global Optimization Methods in Geophysical Inversion; Cambridge University Press: Cambridge, UK, 2013; ISBN 1139619519. [Google Scholar]
- Edigbue, P.; Demirci, I.; Hamdan, H.; Al-Shuhail, A.; Akca, I.; Soupios, P.; Candansayar, E. Joint Inversion of Seismic and DC Geophysical Data Using Local and Global Optimization Algorithms. In Proceedings of the International Petroleum Technology Conference, Riyadh, Saudi Arabia, 21–23 February 2022; IPTC: Riyadh, Saudi Arabia, 2022. [Google Scholar]
- Powers, R.; Ramirez, L.; Redmond, C.; Elberg, E. Geology of the Arabian peninsula; US Geological Survey: Washington, DC, USA, 1966; Volume 560.
- Roger, J.; Giot, D. Industrial Mineral Resources Map of Ad Dammām, Kingdom of Saudi Arabia; Ministry of Petroleum and Mineral Resources, Deputy Ministry for Mineral Resources: Jeddah, Saudi Arabia, 1985.
- Al-Fahmi, M.; Cooke, M.L.; Cole, J.C. Modeling of the Dammam outcrop fractures: Case study for fracture development in salt-cored structures. GeoArabia J. Middle East Pet. Geosci. 2014, 19, 49–80. [Google Scholar] [CrossRef]
- Chavanidis, K.; Stampolidis, A.; Kirmizakis, P.; Tranos, M.; Fedi, M.; Pasteka, R.; Al-Ramadan, K.; Kaka, S.; Tsokas, G.N.; Soupios, P. Gravity Survey on the Oil-Bearing Dammam Dome (Eastern Saudi Arabia) and Its Implications. Remote Sens. 2022, 14, 735. [Google Scholar] [CrossRef]
- Palmer, A.R. The Decade of North American Geology 1983 Geologic Time Scale. Geology 1983, 11, 503. [Google Scholar] [CrossRef]
- Alkhalifa, M.A.; Kurison, C. Karst collapse and gypsum-filled veins in Eocene outcrops, Dammam Dome, Saudi Arabia: Causes and implications. Geosyst. Geoenviron. 2023, 2, 100109. [Google Scholar] [CrossRef]
- Hanafy, S.M.; Jonsson, S.; Klinger, Y. Imaging normal faults in alluvial fans using geophysical techniques: Field example from the coast of Gulf of Aqaba, Saudi Arabia. In Proceedings of the SEG Technical Program Expanded Abstracts 2014; Society of Exploration Geophysicists: Houston, TX, USA, 2014; pp. 4670–4674. [Google Scholar]
- Edigbue, P.; Al-Shuhail, A. Three-dimensional supervirtual seismic refraction interferometry. Arab. J. Geosci. 2016, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- Hanafy, S.; Gupta, H. Seismic, super-virtual refraction interferometry. In Encyclopedia of Solid Earth Geophysics; Encyclopedia of Earth Sciences Series; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-10475-7. [Google Scholar]
- Newman, G.A.; Alumbaugh, D.L. Three-dimensional massively parallel electromagnetic inversion-I. Theory. Geophys. J. Int. 1997, 128, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Sajeva, A.; Aleardi, M.; Galuzzi, B.; Stucchi, E.; Spadavecchia, E.; Mazzotti, A. Comparing the performances of four stochastic optimisation methods using analytic objective functions, 1D elastic full-waveform inversion, and residual static computation. Geophys. Prospect. 2017, 65, 322–346. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In Proceedings of the Parallel Problem Solving from Nature PPSN VI; Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
- Edigbue, P.; Demirci, I.; Akca, I.; Hamdan, H.A.; Kirmizakis, P.; Soupios, P.; Candansayar, E.; Hanafy, S.; Al-Shuhail, A. A Comprehensive Study of Local, Global, and Combined Optimization Methods on Synthetic Seismic Refraction and Direct Current Resistivity Data. Appl. Sci. 2022, 12, 11589. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edigbue, P.; Demirci, I.; Akca, I.; Hamdan, H.; Kirmizakis, P.; Soupios, P.; Tranos, M.; Abu-Mahfouz, I.S.; Candansayar, E.; Hanafy, S.; et al. Application of Combined Local and Global Optimization Algorithms in Joint Interpretation of Direct Current Resistivity and Seismic Refraction Data: A Case Study of Dammam Dome, Eastern Saudi Arabia. Sensors 2022, 22, 9337. https://doi.org/10.3390/s22239337
Edigbue P, Demirci I, Akca I, Hamdan H, Kirmizakis P, Soupios P, Tranos M, Abu-Mahfouz IS, Candansayar E, Hanafy S, et al. Application of Combined Local and Global Optimization Algorithms in Joint Interpretation of Direct Current Resistivity and Seismic Refraction Data: A Case Study of Dammam Dome, Eastern Saudi Arabia. Sensors. 2022; 22(23):9337. https://doi.org/10.3390/s22239337
Chicago/Turabian StyleEdigbue, Paul, Ismail Demirci, Irfan Akca, Hamdan Hamdan, Panagiotis Kirmizakis, Pantelis Soupios, Markos Tranos, Israa S. Abu-Mahfouz, Emin Candansayar, Sherif Hanafy, and et al. 2022. "Application of Combined Local and Global Optimization Algorithms in Joint Interpretation of Direct Current Resistivity and Seismic Refraction Data: A Case Study of Dammam Dome, Eastern Saudi Arabia" Sensors 22, no. 23: 9337. https://doi.org/10.3390/s22239337
APA StyleEdigbue, P., Demirci, I., Akca, I., Hamdan, H., Kirmizakis, P., Soupios, P., Tranos, M., Abu-Mahfouz, I. S., Candansayar, E., Hanafy, S., & Al-Shuhail, A. (2022). Application of Combined Local and Global Optimization Algorithms in Joint Interpretation of Direct Current Resistivity and Seismic Refraction Data: A Case Study of Dammam Dome, Eastern Saudi Arabia. Sensors, 22(23), 9337. https://doi.org/10.3390/s22239337