Development of a Toxic Lead Ionic Sensor Using Carboxyl-Functionalized MWCNTs in Real Water Sample Analyses
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Methods
2.2. Preparation and Purification of the f-MWCNTs
2.3. Sample Preparation and Procedure
3. Results and Discussion
3.1. Evaluation of the Spectral Analysis
3.2. Evaluation of the Structural and Morphological Analysis
3.3. Evaluation of the Elemental Analysis
3.4. Evaluation of the Binding Energy Analysis
3.5. Evaluation of the BET Analysis
3.6. Lead Ion Detection Using f-MWCNTs with ICP-OES (Static Adsorption Method)
3.6.1. Selectivity Study of the f-MWCNTs
3.6.2. Static Adsorption Capacity of the f-MWCNTs
3.6.3. Adsorption Isotherm Models of the f-MWCNTs
3.6.4. Effect of the Shaking Time
3.6.5. Kinetic Model Analysis
3.6.6. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Ahmed, J.; Rakib, R.H.; Rahman, M.M.; Asiri, A.M.; Siddiquey, I.A.; Islam, S.S.M.; Hasnat, M.A. Electrocatalytic Oxidation of 4-Aminophenol Molecules at the Surface of an FeS2/Carbon Nanotube Modified Glassy Carbon Electrode in Aqueous Medium. Chempluschem 2019, 84, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Baughrman, R.H.; Zakhidov, A.A.; Heer, W.A. Carbon Nanotubes–The Route towards Applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.M.; Ahmed, J.; Asiri, A.M.; Siddiquey, I.A.; Hasnat, M.A. Development of highly-sensitive hydrazine sensor based on facile CoS2-CNT nanocomposites. RSC Adv. 2016, 6, 90470–90479. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, J.; Asiri, A.M.; Siddiquey, I.A.; Hasnat, M.A. Development of 4-methoxyphenol chemical sensor based on NiS2-CNT nanocomposites. J. Taiwan Inst. Chem. Engr. 2016, 64, 157–165. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, J.; Asiri, A.M. glassy carbon electrode modified with γ-Ce2S3-decorated CNT nanocomposites for uric acid sensor development: A real sample analysis. RSC Adv. 2017, 7, 14649–14659. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Odom, T.W.; Huang, J.-L.; Lieber, C.M. Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Phys. Rev. Lett. 1999, 82, 1225–1228. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.Z.; Afzali, D.; Pourtalebi, D. Flame atomic absorption spectrometric determination of trace amounts of lead, cadmium and nickel in different matrixes after solid phase extraction on modified multiwalled carbon nanotubes. Cent. Eur. J. Chem. 2010, 8, 662–668. [Google Scholar] [CrossRef]
- Li, Y.; Hu, B. Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. J. Hazard. Mater. 2010, 174, 534–540. [Google Scholar] [CrossRef]
- Bonfil, Y.; Kirowa-Eisner, E. Determination of nanomolar concentrations of lead and cadmium by anodic-stripping voltammetry at the silver electrode. Anal. Chim. Acta 2002, 457, 285–296. [Google Scholar] [CrossRef]
- Tanikkul, S.; Jakmunee, J.; Lapanantnoppakhun, S.; Rayanakorn, M.; Sooksamiti, P.; Synovec, R.E.; Christian, G.D.; Grudpan, K. Flow injection invalve mini-column pretreatment combined with ion chromatography for cadmium, lead and zinc determination. Talanta 2004, 64, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Katowah, D.F.; Hussein, M.A.; Alam, M.M.; Ismail, S.H.; Osman, O.I.; Sobahi, T.R.; Asiri, A.M.; Ahmed, J.; Rahman, M.M. Designed network of ternary core-shell PPCOT/NiFe2O4/C-SWCNTs nanocomposites. A Selective Fe3+ ionic sensor. J. Alloys Compd. 2020, 834, 155020. [Google Scholar] [CrossRef]
- Aqlan, F.M.; Alam, M.M.; Al-Bogami, A.S.; Saleh, T.S.; Wani, M.Y.; Al-Farga, A.; Asiri, A.M.; Karim, M.R.; Ahmed, J.; Fazal, M.A.; et al. Efficient electro-chemical sensor for sensitive Cd2+ detection based on novel in-situ synthesized hydrazonoyl bromide (HB). J. Mol. Struct. 2021, 1231, 129690. [Google Scholar] [CrossRef]
- Pyrzynska, K. Recent developments in the determination of gold by atomic spectrometry techniques. Spectrochim. Acta Part B 2005, 60, 1316–1322. [Google Scholar] [CrossRef]
- Yamaguchi, N.S.; Sekine, T. Solvent extraction of copper (i) and (ii) as thiocyanate complexes with tetrabutylammonium ions into chloroform and with trioctylphosphine oxide into hexane. Anal. Sci. 1997, 13, 903–911. [Google Scholar]
- Tao, G.H.; Fang, Z. Dual stage preconcentration system for flame atomic absorption spectrometry using flow injection on-line ion-exchange followed by solvent extraction. J. Anal. Chem. 1998, 360, 156–160. [Google Scholar] [CrossRef]
- Soylak, M.; Erdogan, N.D. Copper (ii)–rubeanic acid coprecipitation system for separation–preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations. J. Hazard. Mater. 2006, 137, 1035–1041. [Google Scholar] [CrossRef]
- Manzoori, J.L.; Abdolmohammad-Zadeh, H.; Amjadi, M. Simplified cloud point extraction for the preconcentration of ultra-trace amounts of gold prior to determination by electrothermal atomic absorption spectrometry. Mikrochim. Acta 2007, 159, 71–78. [Google Scholar] [CrossRef]
- Ahmed, S.A. Alumina physically loaded by thiosemicarbazide for selective preconcentration of mercury (ii) ion from natural water samples. J. Hazard. Mater. 2008, 156, 521–529. [Google Scholar] [CrossRef]
- Montero Alvarez, A.; Estévez Alvarez, J.R.; Padilla Alvarez, R. Heavy metal analysis of rainwaters: A comparison of txrf and asv analytical capabilities. J. Radioanal. Nucl. Chem. Artic. 2007, 273, 427–433. [Google Scholar] [CrossRef]
- Al-Angari, Y.M.; Kadi, M.; Ismail, I.M.; Gabal, M.A. Effect of alumina incorporation on restricting grain growth of nanocrystalline tin (iv) oxide. Open Chem. 2010, 8, 331–340. [Google Scholar] [CrossRef]
- Pei, S.; Fang, Z. Flame atomic absorption spectrometric determination of silver in geological materials using a flow-injection system with on-line preconcentration by coprecipitation with diethyldithio-carbamate. Anal. Chim. Acta 1994, 294, 185–193. [Google Scholar] [CrossRef]
- Cho, H.J.; Myung, S.-W. Determination of cadmium, chromium and lead in polymers by icp-oes using a high pressure asher (hpa). Bull. Korean Chem. Soc. 2011, 32, 489–497. [Google Scholar] [CrossRef] [Green Version]
- de Castro, G.R.; de Alcântara, I.L.; dos Santos Roldan, P.; de Fátima Bozano, D.; de Magalhães Padilha, P.; de Oliveira Florentino, A.; Rocha, J.C. Synthesis, characterization and determination of the metal ions adsorption capacity of cellulose modified with p-aminobenzoic groups. J. Mater. Res. 2004, 7, 329–334. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Zhu, L.; Sun, X.; Chen, J. Removal of cr (iii, vi) by quaternary ammonium and quaternary phosphonium ionic liquids functionalized silica materials. Chem. Eng. J. 2010, 158, 108–114. [Google Scholar] [CrossRef]
- Marwani, H.M.; Albishri, H.M.; Soliman, E.M.; Jalal, T.A. Selective Adsorption and Determination of Hexavalent Chromium in Water Samples by Chemically Modified Activated Carbon with Tris(hydroxymethyl)aminomethane. J. Dispers. Sci. Technol. 2012, 33, 549–555. [Google Scholar] [CrossRef]
- Marwani, H.M.; Albishri, H.M.; Jalal, T.A.; Soliman, E.M. Activated carbon immobilized dithizone phase for selective adsorption and determination of gold (iii), Desalin. Water Treat. 2012, 45, 128–135. [Google Scholar] [CrossRef]
- Biparva, P.; Hadjmohammadi, M.R. Selective Separation/Preconcentration of Silver Ion in Water by Multiwalled Carbon Nanotubes Microcolumn as a Sorbent. Clean-Soil Air Water 2011, 39, 1081–1086. [Google Scholar] [CrossRef]
- Pearton, S.J.; Heo, W.H.; Ivill, M.; Norton, D.P.; Steiner, T. Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 2004, 19, R59. [Google Scholar] [CrossRef]
- Morales, J.; Sánchez, L.; Martín, F.; Ramos-Barrado, J.R.; Sánchez, M. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: A simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta 2004, 49, 4589–4597. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.B.; Marwani, H.M.; Asiri, A.M.; Alamry, K.A.; Rub, M.A.; Khan, A.; Khan, A.A.P.; Qusti, A.H. Low dimensional Ni-ZnO nanoparticles as marker of toxic lead ions for environmental remediation. J. Ind. Eng. Chem. 2014, 20, 1071–1078. [Google Scholar] [CrossRef]
- Xiang, J.; Tu, J.; Zhang, L.; Zhou, Y.; Wang, X.; Shi, S. Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources 2010, 195, 313–319. [Google Scholar] [CrossRef]
- Marabelli, F.; Parravicini, G.B.; Salghetti-Drioli, F. Optical gap of CuO. Phys. Rev. B 1995, 52, 1433. [Google Scholar] [CrossRef] [PubMed]
- Koffyberg, F.P.; Benko, F.A. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J. Appl. Phys. 1982, 53, 1173–1177. [Google Scholar] [CrossRef]
- Kumar, E.S.; Chatterjee, J.; Rama, N.; DasGupta, N.; Rao, M.S.R. A Codoping Route to Realize Low Resistive and Stable p-Type Conduction in (Li, Ni):ZnO Thin Films Grown by Pulsed Laser Deposition. ACS Appl. Mater. Interfaces 2011, 3, 1974–1979. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Qin, Z.; Wang, G.; Du, M.; Ge, H.; Li, X.; Wu, Z.; Wang, J. A Detailed Study on the Negative Effect of Residual Sodium on the Performance of Ni/ZnO Adsorbent for Diesel Fuel Desulfurization. Ind. Eng. Chem. Res. 2010, 49, 4670–4675. [Google Scholar] [CrossRef]
- Tan, E.T.H.; Ho, G.W.; Wong, A.S.W.; Kawi, S.; Wee, A.T.S. Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology 2008, 19, 255706. [Google Scholar] [CrossRef] [Green Version]
- Raula, M.; Rashid, H.; Paira, T.K.; Dinda, E.; Mandal, T.K. Ascorbate-Assisted Growth of Hierarchical ZnO Nanostructures: Sphere, Spindle, and Flower and Their Catalytic Properties. Langmuir 2010, 26, 8769–8782. [Google Scholar] [CrossRef]
- Mourya, A.; Mazumdar, B.; Sinha, S.K. Application of CeO2-MWCNTs nanocomposite for heavy metal ion detection in aqueous solutions by electrochemical technique. Clean. Mater. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Anshori, I.; Rizalputri, L.N.; Althof, R.R.; Surjadi, S.S.; Harimurti, S.; Gumilar, G.; Yuliarto, B.; Handayani, M. Functionalized multi-walled carbon nanotube/silver nanoparticle (f-MWCNT/AgNP) nanocomposites as non-enzymatic electrochemical biosensors for dopamine detection. Nanocomposites 2021, 7, 97–108. [Google Scholar] [CrossRef]
- Vaccarini, L.; Goze, C.; Aznar, R.; Micholet, V.; Journet, C.; Bernier, P. Purification procedure of carbon nanotubes. Synth. Met. 1999, 103, 2492–2493. [Google Scholar] [CrossRef]
- Dujardin, E.; Ebbesen, T.W.; Krishnan, A.; Treacy, M.M. Wetting of Single Shell Carbon Nanotubes. J. Adv. Mat. 1998, 10, 1472–1475. [Google Scholar] [CrossRef]
- Protsailo, L.V.; Fawcett, W.R. Electrochemical Impedance Spectroscopy at Alkanethiol-Coated Gold in Propylene Carbonate. Langmuir 2002, 18, 8933–8941. [Google Scholar] [CrossRef]
- Ahmed, J.; Rahman, M.M.; Siddiquey, I.A.; Asiri, A.M.; Hasnat, M.A. Efficient Bisphenol-A detection based on the ternary metal oxide (TMO) composite by electrochemical approaches. Electrochimica Acta 2017, 246, 597–605. [Google Scholar] [CrossRef]
- Ahmed, J.; Rahman, M.M.; Siddiquey, I.A.; Asiri, A.M.; Hasnat, M.A. Efficient hydroquinone sensor based on zinc, strontium and nickel based ternary metal oxide (TMO) composites by differential pulse voltammetry. Sensors Actuators B Chem. 2018, 256, 383–392. [Google Scholar] [CrossRef]
- Du, N.; Zhang, H.; Wu, P.; Yu, J.; Yang, D. A General Approach for Uniform Coating of a Metal Layer on MWCNTs via Layer-by-Layer Assembly. J. Phys. Chem. C 2009, 113, 17387–17391. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Lin, G.-D.; Zhou, Z.-H.; Dong, X.; Chen, T. Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon 2002, 40, 2429–2436. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Najam, T.; Javed, M.S.; Rahman, M.M.; Tsiakaras, P. Novel Mn-/Co-Nx moieties captured in N-doped carbon nanotubes for enhanced oxygen reduction activity and stability in acidic and alkaline media. ACS Appl. Mater. Interfaces 2021, 13, 23191–23200. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Alamry, K.A. Sensitive and selective m-Tolylhydrazine sensor development based on CdO nanoparticles decorated multi-walled carbon nanotubes. J. Ind. Eng. Chem. 2019, 77, 309–316. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hussein, M.A.; Alamry, K.A.; Al-Shehry, F.M.; Asiri, A.M. Polyaniline/graphene/carbon nanotubes nanocomposites for sensing environmentally hazardous 4-aminophenol. Nano-Struct. Nano-Objects 2018, 15, 63–74. [Google Scholar] [CrossRef]
- Arepalli, S.; Nikolaev, P.; Gorelik, O.; Hadjiev, V.; Holmes, W.; Files, B.; Yowell, L. Catalytic Effect of Dopants on Microstructure and Performance of MCMB-derived Carbonaceous Lamination. Carbon 2004, 42, 1983–1989. [Google Scholar]
- Rahman, M.M.; Balkhoyor, H.B.; Asiri, A.M. Phenolic sensor development based on chromium oxide-decorated carbon nanotubes for environmental safety. J. Environ. Manag. 2017, 188, 228–237. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Xu, X.; Bo, G.; Yan, Y. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. RSC Adv. 2020, 10, 2180–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Basca, W.S.; Ugarte, D.; Chatelain, A. High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes. Phys. Rev. B 1994, 50, 15473. [Google Scholar]
- Rahman, M.M.; Khan, A.; Asiri, A.M. Chemical sensor development based on poly(o-anisidine)silverized-MWCNT nanocomposites deposited glassy carbon electrodes for environmental remediation. RSC Adv. 2015, 5, 71370–71378. [Google Scholar] [CrossRef]
- Rahman, M.M.; Balkhoyor, H.B.; Asiri, A.M.; Marwani, H.M. A gold electrode modified with silver oxide nanoparticle decorated carbon nanotubes for electrochemical sensing of dissolved ammonia. Mikrochim. Acta 2016, 183, 1677–1685. [Google Scholar] [CrossRef]
- Khan, A.; Asiri, A.M.; Khan, A.A.P.; Rub, M.A.; Azum, N.; Rahman, M.M.; Al-Youbi, A.O.; Qusti, A.H. Dual nature, self oxidized poly(o-anisidine) functionalized multiwall carbon nanotubes composite: Preparation, thermal and electrical studies. Compos. Part B: Eng. 2014, 58, 451–456. [Google Scholar] [CrossRef]
- Hussain, S.; Jha, P.; Chouksey, A.; Raman, R.; Islam, S.S.; Islam, T.; Choudhary, P.K.; Harsh. Spectroscopy investigation of modified single wall carbon nanotube. J. Mod. Phys. 2011, 2, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Abuilaiwi, F.A.; Laoui, T.; Al-Harthi, M.; Atieh, M.A. Modification And Functionalization Of Multiwalled Carbon Nanotube (Mwcnt) Via Fischer Esterification. Arab. J. Sci. Eng. 2010, 35, 37–48. [Google Scholar]
- Lee, G.W.; Kim, J.; Yoon, J.; Bae, J.S.; Shin, B.C.; Kim, I.S.; Oh, W.; Ree, M. Structural characterization of carboxylated multi-walled carbon nanotubes. Thin Solid Film. 2008, 516, 5781–5784. [Google Scholar] [CrossRef]
- Wu, F.Y.; Cheng, H.M. Structure and thermal expansion of multi-walled carbon nanotubes before and after high temperature treatment. J. Phys. D Appl. Phys. 2005, 38, 4302–4307. [Google Scholar] [CrossRef]
- Ahmed, D.S.; Haider, A.J.; Mohammad, M.R. Comparison of Functionalization of multiwalled Carbon nanotubes treated by oil olive and nitric acid and their characterization. Energy Procedia 2013, 36, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Flygare, M.; Svensson, K. Quantifying crystallinity in carbon nanotubes and its influence on mechanical behavior. Mater. Commun. 2019, 18, 39–45. [Google Scholar]
- Arias, I.; Arroyo, M. Size-Dependent Nonlinear Elastic Scaling of Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2008, 100, 085503. [Google Scholar] [CrossRef]
- Cambedouzou, J.; Chorro, M.; Almairac, R.; Noé, L.; Flahaut, E.; Rols, S.; Monthioux, M.; Launois, P. X-ray diffraction as a tool for the determination of the structure of double-walled carbon nanotube batches. Phys. Rev. B 2009, 79, 195423. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Luo, C.; Cong, Q. Synthesis of Multi-walled Carbon Nanotubes/ZnO Nanocomposites using Absorbent Cotton. Nano-Micro Lett. 2011, 3, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Avile´S, F.; Cauich-RodrGuez, J.V.; Moo-Tah, L. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47, 2970–2975. [Google Scholar] [CrossRef]
- Chu, P.K.; Li, L. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 2006, 96, 253–277. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, J.; Asiri, A.M. Development of Creatine sensor based on antimony-doped tin oxide (ATO) nanoparticles. Sens. Actuators B Chem. 2017, 242, 167–175. [Google Scholar] [CrossRef]
- Subhan, A.; Saha, P.C.; Sumon, S.A.; Ahmed, J.; Asiri, A.M.; Rahman, M.M.; Al-Mamun, M. Enhanced photocatalytic activity and ultra-sensitive benzaldehyde sensing performance of a SnO2·ZnO·TiO2 nanomaterial. RSC Adv. 2018, 8, 33048–33058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puglia, C.; Bennich, P.; Hasselström, J.; Brühwiler, P.; Nilsson, A.; Li, Z.; Rudolf, P.; Mårtensson, N. XPS and XAS study of oxygen coadsorbed with a dispersed phase of K on graphite. Surf. Sci. 2001, 488, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Ahmed, J.; Asiri, A.M. Thiourea sensor development based on hydrothermally prepared CMO nanoparticles for environmental safety. Biosens. Bioelectron. 2018, 99, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Han, D.M.; Fang, G.Z.; Yan, X.P. Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples. J. Chromatogr. A 2005, 1100, 131–136. [Google Scholar] [CrossRef]
- Soliman, E.M.; Marwani, H.M.; Albishri, H.M. Novel solid-phase extractor based on functionalization of multi-walled carbon nano tubes with 5-aminosalicylic acid for preconcentration of Pb (II) in water samples prior to determination by ICP-OES. Environ. Monit. Assess. 2013, 185, 10269–10280. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chang, X.; Zou, X.; Zhu, X.; Nie, R.; Hu, Z.; Li, R. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions. Anal. Chim. Acta 2009, 632, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Hu, Z.; Li, Z.; He, Q.; Chang, X. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J. Hazard. Mater. 2009, 172, 958–963. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.B.; Asiri, A.M.; Marwani, H.M.; Qusti, A.H. Selective detection of toxic pb (ii) ions based on wet-chemically prepared nanosheets integrated CuO–ZnO nanocomposites. Compos. Part B Eng. 2013, 54, 215–223. [Google Scholar] [CrossRef]
- Marwani, H.M. Selective separation and determination of lead based on silica gel developed by surface adsorbed new hydrophobic ionic liquid. J. Disp. Sci. Technol. 2013, 34, 117–124. [Google Scholar] [CrossRef]
- Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787–2792. [Google Scholar] [CrossRef]
- Khan, S.B.; Rahman, M.M.; Asiri, A.M.; Marwani, H.M.; Bawaked, S.M.; Alamry, K.A. Co3O4 co-doped TiO2 nanoparticles as a selective marker of lead in aqueous solution. New J. Chem. 2013, 37, 2888–2893. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- McKay, G.; Blair, H.S.; Gardner, J.R. Adsorption of dyes on chitin-i: Equilibrium studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057. [Google Scholar] [CrossRef]
- Ho, Y.-S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef]
- Khan, A.A.P.; Khan, A.; Alam, M.M.; Asiri, A.M.; Uddin, J.; Rahman, M.M. SDBS-functionalized MWCNT/poly(o-toluidine) nanowires modified glassy carbon electrode as a selective sensing platform for Ce3+ in real samples. J. Mol. Liq. 2019, 279, 392–399. [Google Scholar] [CrossRef]
- Khan, A.A.P.; Bazan, G.C.; Alhogbi, B.G.; Marwani, H.M.; Khan, A.; Alam, M.M.; Asiri, A.M.; Rahman, M.M. Nanocomposite cross-linked conjugated polyelectrolyte/MWCNT/poly(pyrrole) for enhanced Mg2+ ion sensing and environmental remediation in real samples. J. Mater. Res. Technol. 2020, 9, 9667–9674. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.B.; Marwani, H.M.; Asiri, A.M. A SnO2-Sb2O3 nanocomposite for selective adsorption of lead ions from water samples prior to their determination by ICP-OES. Mikrochim. Acta 2014, 182, 579–588. [Google Scholar] [CrossRef]
- Khan, A.A.P.; Khan, A.; Rahman, M.M.; Asiri, A.M.; Oves, M. Lead sensors development and antimicrobial activities based on graphene oxide/carbon nanotube/poly(O-toluidine) nanocomposite. Int. J. Biol. Macromol. 2016, 89, 198–205. [Google Scholar] [CrossRef]
- Awual, M.R.; Islam, A.; Hasan, M.M.; Rahman, M.M.; Asiri, A.M.; Khaleque, M.A.; Sheikh, M.C. Introducing an alternate conjugated material for enhanced lead (II) capturing from wastewater. J. Clean. Prod. 2019, 224, 920–929. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Islam, A.; Rahman, M.M.; Asiri, A.M.; Khaleque, M.A.; Sheikh, M.C. Offering an innovative composited material for effective lead (II) monitoring and removal from polluted water. J. Clean. Prod. 2019, 231, 214–223. [Google Scholar] [CrossRef]
- Khan, A.A.P.; Khan, A.; Asiri, A.M.; Alam, M.M.; Rahman, M.M. Surfactant-assisted graphene oxide/methyl-aniline nanocomposites for Lead ionic sensor development for the environmental remediation in real sample matrices. Int. J. Environ. Sci. Technol. 2019, 16, 8461–8470. [Google Scholar] [CrossRef]
- Ghann, W.; Harris, T.; Kabir, D.; Kang, H.; Jiru, M.; Rahman, M.M.; Ali, M.M.; Uddin, J. Lipoic Acid Decorated Gold Nanoparticles and Their Application in the Detection of Lead Ions. J. Nanomed. Nanotechnol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awual, R.; Hasan, M.; Iqbal, J.; Islam, A.; Asiri, A.M.; Rahman, M.M. Naked-eye lead (II) capturing from contaminated water using innovative large-pore facial composite materials. Microchem. J. 2020, 154, 104585. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hussain, M.M.; Arshad, M.N.; Asiri, A.M. Synthesis and application of (E)-N′-(benzo [d] dioxol-5-ylmethylene)-4-methyl-benzenesulfonohydrazide for carcinogenic lead detection. RSC Adv. 2020, 10, 5316–5327. [Google Scholar] [CrossRef]
- Aqlan, F.M.; Alam, M.M.; Asiri, A.M.; Zayed, M.E.M.; Al-Eryani, D.A.; Al-Zahrani, F.A.M.; El-Shishtawy, R.M.; Uddin, J.; Rahman, M.M. Fabrication of selective and sensitive Pb2+ detection by 2,2′-(-(1,2-phenylenebis (azaneylylidene))bis(methaneylylidene))diphenol by electrochemical approach for environmental remediation. J. Mol. Liq. 2019, 281, 401–406. [Google Scholar] [CrossRef]
Metal Ion | qe (mgg−1) | Kd (mLg−1) |
---|---|---|
Pb2+ | 4.99 | 7.13 × 105 |
Cd2+ | 3.74 | 2.97 × 103 |
Cr3+ | 3.69 | 2.81 × 103 |
Cu2+ | 3.49 | 2.31 × 103 |
Fe3+ | 3.27 | 1.89 × 103 |
Zn2+ | 2.93 | 1.42 × 103 |
Co2+ | 2.63 | 1.11 × 103 |
Ni2+ | 0.91 | 2.22 × 102 |
Materials | Methods | Detection Limit | Adsorption Capacity | References |
---|---|---|---|---|
MWCNTs–5-ASA | ICP-OES | 0.25 ng mL−1 | 32.75 mg g−1 | [76] |
AC–EDA | ICP-OES | 0.17 ng mL−1 | - | [77] |
EDA–MWCNTs | ICP-OES | 0.35 ng mL−1 | - | [78] |
CuO–ZnO NCs | ICP-OES | 82.66 mg g−1 | [79] | |
SG-1,10-PhenanNTf2 | ICP-OES | - | 5.89 mg g−1 | [80] |
MWCNTs | ICP-OES | - | 97.08 mg g−1 | [81] |
Co3O4–TiO2 NPs | ICP-OES | - | 114.05 mg g−1 | [82] |
Samples | Added (mgL−1) | Not Adsorbed (mgL−1) | Extraction (%) |
---|---|---|---|
Tap water | 1 | 0.02 | 98.10 |
5 | 0.15 | 96.94 | |
10 | 0.45 | 95.49 | |
Lake water | 1 | 0.03 | 96.90 |
5 | 0.20 | 95.92 | |
10 | 0.62 | 93.84 | |
Seawater | 1 | 0.04 | 96.40 |
5 | 0.21 | 95.70 | |
10 | 0.82 | 91.85 | |
Drinking Water | 1 | 0.01 | 99.20 |
5 | 0.10 | 97.96 | |
10 | 0.31 | 96.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marwani, H.M.; Ahmed, J.; Rahman, M.M. Development of a Toxic Lead Ionic Sensor Using Carboxyl-Functionalized MWCNTs in Real Water Sample Analyses. Sensors 2022, 22, 8976. https://doi.org/10.3390/s22228976
Marwani HM, Ahmed J, Rahman MM. Development of a Toxic Lead Ionic Sensor Using Carboxyl-Functionalized MWCNTs in Real Water Sample Analyses. Sensors. 2022; 22(22):8976. https://doi.org/10.3390/s22228976
Chicago/Turabian StyleMarwani, Hadi M., Jahir Ahmed, and Mohammed M. Rahman. 2022. "Development of a Toxic Lead Ionic Sensor Using Carboxyl-Functionalized MWCNTs in Real Water Sample Analyses" Sensors 22, no. 22: 8976. https://doi.org/10.3390/s22228976
APA StyleMarwani, H. M., Ahmed, J., & Rahman, M. M. (2022). Development of a Toxic Lead Ionic Sensor Using Carboxyl-Functionalized MWCNTs in Real Water Sample Analyses. Sensors, 22(22), 8976. https://doi.org/10.3390/s22228976