Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review
Abstract
:1. Introduction
2. Wireless Sensor Node: An Overview
2.1. Sensing Sub-System
2.2. Computation Sub-System
2.3. Communication Sub-System
2.4. Power Supply Sub-System
3. MCU-Based Hardware Platforms for Wireless Sensor Nodes
3.1. Human Monitoring and Tracking
3.1.1. InfiniTime
3.1.2. Wireless Sensor Node with Application in Sports
3.2. Environmental Monitoring and Smart Farming
3.2.1. MoleNet
3.2.2. Sensor Nodes for Agriculture and Rural Monitoring
3.2.3. FROG Node
3.2.4. Sensor Node Platform for Agriculture Monitoring
3.2.5. Wireless Sensor Networks for Critical Event Detection
3.2.6. “The Smaller the Better” Sensor Node
3.2.7. Wireless Multi-Sensor Node
3.2.8. Airborne Sensor Motes
3.2.9. Wildlife Observation Sensor Node
3.2.10. Smart Helmet
3.2.11. Drone-to-Sensor Wireless Ranging Platform
3.2.12. Smart Wireless Climate Sensor Node
3.3. Smart Cities and Automotive Applications
3.3.1. Sensor Nodes for Smart Cities
3.3.2. Wireless Sensor Network Hardware for Automotive Applications
3.3.3. Plant Microbial Fuel Cell-Based Wireless Sensor Node
3.4. General IoT Applications
3.4.1. MEGAN
3.4.2. WaterGrid-Sense
3.4.3. Wireless Sensor Node for IoT
3.4.4. NanoICARUS Mote
3.4.5. Flexible Fog Computing-Based Sensor Node
3.4.6. MICAz Mote
3.4.7. IRIS
3.4.8. LOTUS
3.4.9. WiSense
3.4.10. Waspmote Plug & Sense!
3.5. Seismic Monitoring Applications
3.5.1. Jennic
3.5.2. Wireless Sensor Node for Seismic Monitoring
4. Technical Discussion
4.1. Mote Specifications and Applications
4.1.1. Processor and Memory Capabilities
4.1.2. Power Consumption
4.1.3. Applications
4.1.4. Communication Capabilities
4.1.5. Sensor Support
4.1.6. Power Supply
4.1.7. Hardware Security
4.1.8. Programming of Sensor Nodes
4.2. Challenges and Future Trends
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef] [Green Version]
- Abo-Zahhad, M.; Amin, O.; Farrag, M.; Ali, A. A Survey on Protocols, Platforms and Simulation Tools for Wireless Sensor Networks. Int. J. Energy Inf. Commun. 2014, 5, 17–34. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, T.; Fang, C.; Zeng, J.; Yang, X. IoT sensors for smart livestock management. Comput. Electron. Agric. 2020, 11, 900. [Google Scholar] [CrossRef]
- Abdollahi, A.; Rejeb, K.; Rejeb, A.; Mostafa, M.M.; Zailani, S. Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis. Sustainability 2021, 13, 12011. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Hashwan, S.S.B.; Junaid, M.M. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef]
- López-ardao, J.C.; Rodríguez-rubio, R.F.; Sousa-vieira, M.E.; Suárez-gonzález, A. Current Trends on Green Wireless Sensor Networks. Sensors 2021, 21, 4281. [Google Scholar] [CrossRef]
- Chuo, L.-X.; Feng, Z.; Kim, Y.; Chiotellis, N.; Yasuda, M.; Miyoshi, S.; Kawaminami, M.; Grbic, A.; Wentzloff, D.; Blaauw, D.; et al. Millimeter-Scale Node-to-Node Radio Using a Carrier Frequency-Interlocking if Receiver for a Fully Integrated 4 Wireless Sensor Node. IEEE J. Solid-State Circuits 2020, 55, 1128–1138. [Google Scholar] [CrossRef]
- Mazunga, F.; Nechibvute, A. Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues. Sci. Afr. 2021, 11, e00720. [Google Scholar] [CrossRef]
- Karray, F.; Jmal, M.W.; Garcia-ortiz, A.; Abid, M.; Obeid, A.M. A Comprehensive Survey on Wireless Sensor Node Hardware Platforms. Comput. Netw. 2018, 144, 89–110. [Google Scholar] [CrossRef]
- Johnson, M.; Healy, M.; van de Ven, P.; Hayes, M.J.; Nelson, J.; Newe, T.; Lewis, E. A Comparative Review of Wireless Sensor Network Mote Technologies. In Proceedings of the Sensors 2009 IEEE, Christchurch, New Zealand, 25–28 October 2009; pp. 1439–1442. [Google Scholar] [CrossRef]
- Habtoor, M.S.; Rowaihy, H. Performance Evaluation of IRIS and LOTUS Motes When Communicating in Real Environments. Int. J. Distrib. Sens. Netw. 2016, 12, 7347158. [Google Scholar] [CrossRef] [Green Version]
- Ojo, M.O.; Giordano, S.; Procissi, G.; Seitanidis, I.N. A Review of Low-End, Middle-End, and High-End Iot Devices. IEEE Access 2018, 6, 70528–70554. [Google Scholar] [CrossRef]
- Khalifeh, A.; Darabkh, K.A.; Khasawneh, A.M.; Alqaisieh, I.; Salameh, M. Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation. Electronics 2021, 10, 218. [Google Scholar] [CrossRef]
- Misra, S.; Roy, S.K.; Roy, A.; Obaidat, M.S.; Jha, A. MEGAN: Multipurpose Energy-Efficient, Adaptable, and Low-Cost Wireless Sensor Node for the Internet of Things. IEEE Syst. J. 2020, 14, 144–151. [Google Scholar] [CrossRef]
- Escolar, S.; Carretero, J.; Fernandez, J. Survey of the State-of-the-Art in Flash-based Sensor Nodes. Flash Mem. 2011, 113–136. [Google Scholar] [CrossRef] [Green Version]
- Furtak, J.; Zieliński, Z.; Chudzikiewicz, J. A framework for constructing a secure domain of sensor nodes. Sensors 2019, 19, 2797. [Google Scholar] [CrossRef] [Green Version]
- Khalifeh, A.; Saadeh, M.; Darabkh, K.A.; Nagaradjane, P. Radio frequency based wireless charging for unsupervised clustered WSN: System implementation and experimental evaluation. Energies 2021, 14, 1829. [Google Scholar] [CrossRef]
- Magno, M.; Brunelli, D.; Sigrist, L.; Andri, R.; Cavigelli, L.; Gomez, A.; Benini, L. InfiniTime: Multi-sensor wearable bracelet with human body harvesting. Sustain. Comput. Inform. Syst. 2018, 11, 38–49. [Google Scholar] [CrossRef]
- Sacaleanu, D.I.; Perisoara, L.A.; Spataru, E.; Stoian, R. Low-cost wireless sensor node with application in sports. In Proceedings of the 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging, Constanța, Romania, 26–29 October 2017; pp. 395–398. [Google Scholar] [CrossRef]
- Zaman, I.; Gellhaar, M.; Dede, J.; Koehler, H. Demo: Design and Evaluation of MoleNet for Wireless Underground Sensor Demo: Design and Evaluation of Underground Wireless Sensor Networks for Reforestation Monitoring. In Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops), Dubai, United Arab Emirates, 7–10 November 2016; pp. 145–147. [Google Scholar] [CrossRef]
- Lam, P.T.; Le, T.Q.; Le, N.N.; Nguyen, S.D. Wireless sensing modules for rural monitoring and precision agriculture applications. J. Inf. Telecommun. 2018, 2, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Castillo-cara, M.; Huaranga-junco, E.; Quispe-montesinos, M.; Orozco-barbosa, L.; Antúnez, E.A. Research Article FROG: A Robust and Green Wireless Sensor Node for Fog Computing Platforms. J. Sens. 2018, 2018, 3406858. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, A.A.; Schwab, M.; Silnik, A.A.; Debattista, A.F.; Kiessling, R.A. Low Power Wireless Sensor Node Platform for Agriculture Monitoring in Argentina. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Zhengzhou, China, 18–20 October 2019; pp. 101–105. [Google Scholar] [CrossRef]
- Khalifeh, A.; Sakkijha, Z.; Qaderi, H.; Ghatasheh, O.; Issa, A.; Shatat, A.; Jaber, H.; Alwardat, R.; Alhaj-Ali, S. An Energy Efficient WSN Implementation for Monitoring and Critical Event Detection. In Proceedings of the 2019 2nd IEEE Middle East and North Africa Communications Conference (MENACOMM), Manama, Bahrain, 19–21 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Mabon, M.; Gautier, M.; Vrigneau, B.; le Gentil, M.; Berder, O. The Smaller the Better: Designing Solar Energy Harvesting Sensor Nodes for Long-Range Monitoring. Wirel. Commun. Mob. Comput. 2019, 2019, 2878545. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wu, T.; Li, X.; He, Q.; Cui, Z. A Wireless Multisensor Node for Long-Term Environmental Parameters Monitoring. Int. J. Electr. Comput. Eng. 2020, 2020, 8872711. [Google Scholar] [CrossRef]
- Bolt, M.; Prather, J.C.; Horton, T.; Adams, M. Massively Deployable, Low-Cost Airborne Sensor Motes for Atmospheric Characterization. Wirel. Sens. Netw. 2020, 12, 99869. [Google Scholar] [CrossRef]
- Camal, L.; Aksanli, B. Building an energy-efficient ad-hoc network for wildlife observation. Electronics 2020, 9, 984. [Google Scholar] [CrossRef]
- Pradeepkumar, G.; Rahul, S.S.; Sudharsanaa, N.; Suvetha, S. A Smart Helmet for the Mining Industry using LoRaWAN A. J. Phys. Conf. Ser. 2021, 1916, 012089. [Google Scholar] [CrossRef]
- Jornet-monteverde, J.A.; Galiana-merino, J.J. Design and Implementation of a Wireless Sensor Network for Seismic Monitoring of Buildings. Sensors 2021, 21, 3875. [Google Scholar] [CrossRef]
- Baire, M.; Melis, A.; Lodi, M.B.; Dachena, C.; Fanti, A.; Farris, S.; Pisanu, T.; Mazzarella, G. WSN hardware for automotive applications: Preliminary results for the case of public transportation. Electronics 2019, 8, 1483. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Ruiz, D.; Atoche, A.C.; Ruiz-Ibarra, E.; de la Rosa, E.O.; Castillo, J.V. A self-powered PMFC-based wireless sensor node for smart city applications. Wirel. Commun. Mob. Comput. 2019, 2019, 8986302. [Google Scholar] [CrossRef]
- Khutsoane, O.; Member, I.S.; Isong, B.; Gasela, N.; Abu-mahfouz, A.M. WaterGrid-Sense: A LoRa-based Sensor Node for Industrial IoT applications. IEEE Sens. J. 2019, 20, 2722–2729. [Google Scholar] [CrossRef]
- Borza, P.N.; Machedon-Pisu, M.; Hamza-Lup, F. Design of wireless sensors for iot with energy storage and communication channel heterogeneity. Sensors 2019, 19, 3364. [Google Scholar] [CrossRef] [Green Version]
- Kazdaridis, G.; Sidiropoulos, N.; Zografopoulos, I.; Symeonidis, P.; Korakis, T. The ICARUS Mote: Employing Off-Chip RTC to Attain 22 nA Sleep Current in Duty-Cycled IoT Devices. In Proceedings of the IoT ‘20 Companion: 10th International Conference on the Internet of Things, Malmö Sweden, 6–9 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Losada, M.; Cortés, A.; Irizar, A.; Cejudo, J.; Pérez, A. A Flexible Fog Computing Design for Low-Power Consumption and Low Latency Applications. Electronics 2021, 10, 57. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Song, G.; Tan, Y.; Zheng, Y.; Han, Y. Systematic Development of a Wireless Sensor Network for Piezo-Based Sensing. J. Sens. 2018, 2018, 9315364. [Google Scholar] [CrossRef]
- Oliveira, D.; Costa, M.; Pinto, S.; Gomes, T. The future of low-end motes in the Internet of things: A prospective paper. Electronics 2020, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Bouras, C.; Gkamas, A.; Aniceto, S.; Salgado, K. Internet of Things Energy efficient mechanism for LoRa networks. Internet Things 2021, 13, 100360. [Google Scholar] [CrossRef]
- Ragnoli, M.; Colaiuda, D.; Leoni, A.; Ferri, G.; Barile, G.; Rotilio, M.; Laurini, E.; De Berardinis, P.; Stornelli, V. A LoRaWAN Multi-Technological Architecture for Construction Site Monitoring. Sensors 2022, 22, 8685. [Google Scholar] [CrossRef]
- Finochietto, M.; Santos, R.; Ochoa, S.F.; Meseguer, R. Reducing Operational Expenses of LoRaWAN-Based Internet of Remote Things Applications. Sensors 2022, 22, 7778. [Google Scholar] [CrossRef]
- Idris, S.; Karunathilake, T.; Förster, A. Survey and Comparative Study of LoRa-Enabled Simulators for Internet of Things and Wireless Sensor Networks. Sensors 2022, 22, 5546. [Google Scholar] [CrossRef]
- Maudet, S.; Andrieux, G.; Chevillon, R.; Diouris, J.-F. Refined Node Energy Consumption Modeling in a LoRaWAN Network. Sensors 2021, 21, 6398. [Google Scholar] [CrossRef]
- Behjati, M.; Mohd Noh, A.B.; Alobaidy, H.A.H.; Zulkifley, M.A.; Nordin, R.; Abdullah, N.F. LoRa Communications as an Enabler for Internet of Drones towards Large-Scale Livestock Monitoring in Rural Farms. Sensors 2021, 21, 5044. [Google Scholar] [CrossRef]
- Gleonec, P.-D.; Ardouin, J.; Gautier, M.; Berder, O. Energy Allocation for LoRaWAN Nodes with Multi-Source Energy Harvesting. Sensors 2021, 21, 2874. [Google Scholar] [CrossRef]
- Berto, R.; Napoletano, P.; Savi, M. A LoRa-Based Mesh Network for Peer-to-Peer Long-Range Communication. Sensors 2021, 21, 4314. [Google Scholar] [CrossRef]
- Ragnoli, M.; Leoni, A.; Barile, G.; Ferri, G.; Stornelli, V. LoRa-Based Wireless Sensors Network for Rockfall and Landslide Monitoring: A Case Study in Pantelleria Island with Portable LoRaWAN Access. J. Low Power Electron. Appl. 2022, 12, 47. [Google Scholar] [CrossRef]
- Duobiene, S.; Ratautas, K.; Trusovas, R.; Ragulis, P.; Šlekas, G.; Simniškis, R.; Račiukaitis, G. Development of Wireless Sensor Network for Environment Monitoring and Its Implementation Using SSAIL Technology. Sensors 2022, 22, 5343. [Google Scholar] [CrossRef] [PubMed]
- Martiradonna, S.; Piro, G.; Boggia, G. On the Evaluation of the NB-IoT Random Access Procedure in Monitoring Infrastructures. Sensors 2019, 19, 3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangana, M.; Ansari, S.; Abbasi, Q.H.; Hussain, S.; Imran, M.A. Suitability of NB-IoT for Indoor Industrial Environment: A Survey and Insights. Sensors 2021, 21, 5284. [Google Scholar] [CrossRef]
- Brito, T.; Pereira, A.I.; Lima, J.; Valente, A. Wireless Sensor Network for Ignitions Detection: An IoT approach. Electronics 2020, 9, 893. [Google Scholar] [CrossRef]
- García-Martín, J.P.; Torralba, A. Model of a Device-Level Combined Wireless Network Based on NB-IoT and IEEE 802.15.4 Standards for Low-Power Applications in a Diverse IoT Framework. Sensors 2021, 21, 3718. [Google Scholar] [CrossRef]
Platform | CPU | Radio Transceiver | Tx Power | Applications | |||||
---|---|---|---|---|---|---|---|---|---|
Type | RAM | FLASH | EEPROM | Type | Freq | Range | |||
InfiniTime [18] | MSP430FR5969 microcontroller | 64 kB (FRAM) | Not mentioned | Not mentioned | M24LR16E-R | 400 kHz | Not mentioned | Not mentioned | Human tracking and monitoring |
MoleNet [20] | Atmega328p microcontroller | 2 kB (SRAM) | 32 kB | 1 kB and 25LC1024 1 MB EEPROM | RFM69CW | 433 MHz/868 MHz | 80 m | Not mentioned | Underground soil monitoring |
[19] | Atmega328P microcontroller | 2 kB | 32 kB | 1 kB | nRF24L01 | 2.4 GHz | 250 m | −18, −12, 16 or 0 dBm | Sports (monitoring athletic abilities) |
[21] | STM32L152 MCU | 16 kB SRAM | 128 kB | 4 kB | MRF24J40 | 2.405 GHz–2.475 GHz | Above 120 m | Not mentioned | Rural monitoring and precision agriculture |
[37] | JN5139 microcontroller | 96 kB RAM | Not mentioned | 192 kB ROM | IEEE 802.15.4 compliant | 2.4 GHz | Not mentioned | 3 dBm | Impact detection, SHM and wireless structural vibration control |
[23] | Atmega328P-PU microcontroller | 2 kB | 32 kB | 1 kB | CC1101 transceiver from Texas Instruments | 300–348 MHz, 387–464 MHz and 779–928 MHz | Over 400 m | 12 dBm | Agriculture monitoring |
FROG [22] | Atmega32U4 microcontroller | 2.5 kB SRAM | 32 kB | 1 kB EEPROM | XBee-PRO XSC radio system | 902–928 MHz | 45 km LOS | 24 dBm | Smart cities and smart farming |
[31] | 64-bit Cortex-A53 | 1 GB RAM and up to 64 GB disk storage. | Not mentioned | Not mentioned | Huawei E3372 Megafon dongle | 900/1900 MHz, 900/2100 MHz, 800/1800/2100/2600 MHz | Not mentioned | Not mentioned | Automotive |
MEGAN [14] | Atmega324PA microcontroller | 2 kB SRAM | 32 kB | 1 kB EEPROM | XBee series 1/Bluetooth (HC-05)/GPRS, Wi-F/GSM | 2.4 GHz | Not mentioned | Not mentioned | Multiple IoT |
[34] | ATMega88 microcontroller | 1 kB SRAM | 8 kB | 512 kB | RFM transceiver (nRF24 L01) and BLE transceiver (HM10BLE) | 2.4 GHz | 10–30 m (BLE), 400–1000 m (RFM) | Not mentioned | IoT-based |
[24] | ATmega1281 | 8 kB SRAM | 128 kB FLASH | 4 kB EEPROM | XBee S1 Pro and XBee 900LP | 2.4 GHz, 900 MHz | Not mentioned | Not mentioned | Environmental monitoring and critical event detection |
[32] | MSP430FR5969 | 64 kB non-volatile FRAM | Not mentioned | Not mentioned | LoRa module (RFM95W) | 868.1 MHz unlicensed band | 2 km in LOS or 20 km with directional antennas | +5 to +20 dBm | Smart cities |
[28] | 32-Bit Arm Cortex-M0 CPU | 32 kB SRAM | 256 kB flash | Not mentioned | BLE module | 2.4 GHz | Not mentioned | −18 dBm to +3 dBm | Wildlife monitoring |
[36] | Arm® Cortex®-M4 MCU (CC3220MODASF12) | 256 kB | 1 MB flash | Not mentioned | LoRa (RN2483) and Wi-Fi modules | 2.4 GHz | Not mentioned | Not mentioned | IoT |
[29] | Arm cortex M0+ (SAMD21) | 32 kB SRAM | 256 kB flash | Not mentioned | LoRa (RFM69) module | 868 MHz/915 MHz/865 to 867 MHz/923 MHz | 500 m LOS | +20 dBm | Air quality monitoring in mining industries |
[13] | ATmega1281 | 8 kB | 128 kB | Not mentioned | ZigBee module (XBee-PRO and XBee S2) | 2.4 GHz | 1500 m (XBee-PRO), 120 m (XBee S2) | 18 dBm (XBee-PRO), 3 dBm (XBee S2) | Multi-applications in smart cities and remote monitoring and sensing |
[30] | ARM Cortex-M4 MCU-CC3200 | 256 kB | Not mentioned | Not mentioned | Wi-Fi-CC3200 | Not mentioned | Not mentioned | 18 dBm | Seismic monitoring of buildings |
Platform | CPU | Radio Transceiver | Tx Power | Applications | |||||
---|---|---|---|---|---|---|---|---|---|
Type | RAM | FLASH | EEPROM | Type | Freq | Range | |||
MICAz (2004) | Atmega128 | 4 | 128 | 512 | CC2420 | 900 | 12 | 89 mW | Multi-applications |
IRIS | ATmega 128-1 | 8 kB | 128 kB + 512 kB serial | 4 kB | IEEE 802.15.4 compliant | 2.405 GHz to 2.480 GHz | >30 m indoor, >300 m outdoor | 3 dBm | Indoor building monitoring and security, acoustic, video, large-scale sensor networks |
LOTUS | NXP LPC1758 ARM Cortex M3 CPU | 64 kB | 512 kB | - | RF231 | 2.405 GHz to 2.480 GHz | >500 m | seismic vibration monitoring, video, acoustic sensing and high-speed processing | |
WiSense | MSP430G2955 by TI | 4 kB SRAM | 56 kB | 128 kB | CC1120 | 865–867 MHz | >1 km | 13 dBm | Very low-power including remote sensing |
Waspmote Plug & Sense!V15 | ATmega 1281 | SRAM 8 kB, | Flash 128 kB, SD card | EEPROM 4 kB (1 kB reserved) | XBee-PRO, LPWAN, cellular, Bluetooth PRO, BLE, etc. | Wide range | short, medium and long range | IoT |
MCU | Clock Freq. (MHz) | Power Consumption | |
---|---|---|---|
Active | Sleep | ||
Atmega328p | 16 | 14 mA | 66 µA |
STM32L152 MCU | 32 | 6.24 mA | 4.6 µA |
JN5139 microcontroller | 32 | 37 mA | 2.6 µA |
Atmega324PA | 20 | 0.4 mA@1 MHz, 1.8 V | 0.6 µA (RTC on) |
ATMega88 | 20 | 0.3 mA | 0.8 μA (RTC on) |
MSP430FR5969 | 16 | 103 µA/MHz | 0.25 µA (LPM3.5) |
STM32L476RG | 80 | 100 µA/MHz | 420 nA Standby mode (RTC on) |
CC430F5137 | 20 | 160 µA/MHz | 2 µA |
Arm Cortex M0+ (SAMD21) | 48 | ~7 mA | ~12.8 µA |
ARM Cortex-M4 MCU | 80 | 229 mA | 250 μA (LPDS), 4 μA (hibernate) |
ATmega1281 | 8 | 500 µA/MHz | 0.1 µA @1.8 V |
ARM Cortex M3 CPU | 120 | 195 µA/MHz | 1.11 µA (RTC on) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifeh, A.; Mazunga, F.; Nechibvute, A.; Nyambo, B.M. Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review. Sensors 2022, 22, 8937. https://doi.org/10.3390/s22228937
Khalifeh A, Mazunga F, Nechibvute A, Nyambo BM. Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review. Sensors. 2022; 22(22):8937. https://doi.org/10.3390/s22228937
Chicago/Turabian StyleKhalifeh, Ala’, Felix Mazunga, Action Nechibvute, and Benny Munyaradzi Nyambo. 2022. "Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review" Sensors 22, no. 22: 8937. https://doi.org/10.3390/s22228937
APA StyleKhalifeh, A., Mazunga, F., Nechibvute, A., & Nyambo, B. M. (2022). Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review. Sensors, 22(22), 8937. https://doi.org/10.3390/s22228937