Intelligent Reflecting Surfaces Enhanced Mobile Edge Computing: Minimizing the Maximum Computational Time
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation and Contribution
- We proposed a task’s computational time minimization problem with joint optimization of computational and communication resources, such as edge computational resource, phase shift control, transmission power, and task segmentation, under energy and system constraints;
- To address the non-linearity and non-convexity that characterize the original optimization problem, we decoupled the original optimization problem into sub-problems and iteratively solved them. Furthermore, we also drive a closed-form solution for task segmentation and computational resource allocation at MEC;
- Numerical results are compared to the exhaustive search and other benchmark schemes to demonstrate the efficacy of the proposed scheme. By taking into account, task computational time and energy consumption as performance matrices, numerical results show that the proposed scheme performs epsilon equally to the exhaustive search and outperforms all other schemes.
2. System Model
2.1. Communication Model
2.2. Task Computational Model
2.2.1. Local Computation
2.2.2. Edge Computing
2.3. Problem Formulation
3. Proposed Solution
3.1. Task Segmentation
3.2. Edge Computational Resource Allocation
3.3. Transmission Power and Phase Shift Control
Algorithm 1: Framework for Optimal Resource Allocation. |
3.4. Worst Case Per Iteration Complexity Analysis
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, T.; Malik, J.; Bibi, I.; Khan, W.U.; Al-Wesabi, F.N.; Dev, K.; Huang, G. Securing industrial internet of things against botnet attacks using hybrid deep learning approach. IEEE Trans. Netw. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Khan, W.U.; Jameel, F.; Li, X.; Bilal, M.; Tsiftsis, T.A. Joint spectrum and energy optimization of NOMA-enabled small-cell networks with QoS guarantee. IEEE Trans. Veh. Technol. 2021, 70, 8337–8342. [Google Scholar] [CrossRef]
- Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.C. Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Commun. Surv. Tutor. 2020, 22, 2283–2314. [Google Scholar] [CrossRef]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.U.; Nguyen, T.N.; Jameel, F.; Jamshed, M.A.; Pervaiz, H.; Javed, M.A.; Jäntti, R. Learning-based resource allocation for backscatter-aided vehicular networks. IEEE Trans. Intell. Transp. Syst. 2021, 23, 19676–19690. [Google Scholar] [CrossRef]
- Jameel, F.; Javaid, U.; Khan, W.U.; Aman, M.N.; Pervaiz, H.; Jäntti, R. Reinforcement learning in blockchain-enabled IIoT networks: A survey of recent advances and open challenges. Sustainability 2020, 12, 5161. [Google Scholar] [CrossRef]
- Liu, J.; Ahmed, M.; Mirza, M.A.; Khan, W.U.; Xu, D.; Li, J.; Aziz, A.; Han, Z. RL/DRL meets vehicular task offloading using edge and vehicular cloudlet: A survey. IEEE Internet Things J. 2022, 9, 8315–8338. [Google Scholar] [CrossRef]
- Khan, W.U.; Ihsan, A.; Nguyen, T.N.; Javed, M.A.; Ali, Z. NOMA-enabled backscatter communications for green transportation in automotive-Industry 5.0. IEEE Trans. Ind. Inform. 2022, 18, 7862–7874. [Google Scholar] [CrossRef]
- Raza, S.; Wang, S.; Ahmed, M.; Anwar, M.R.; Mirza, M.A.; Khan, W.U. Task offloading and resource allocation for IoV using 5G NR-V2X communication. IEEE Internet Things J. 2021, 9, 10397–10410. [Google Scholar] [CrossRef]
- Khan, W.U.; Ali, Z.; Lagunas, E.; Mahmood, A.; Asif, M.; Ihsan, A.; Chatzinotas, S.; Ottersten, B.; Dobre, O.A. Rate Splitting Multiple Access for Next Generation Cognitive Radio Enabled LEO Satellite Networks. arXiv 2022, arXiv:2208.03705. [Google Scholar]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Mahmood, A.; Hong, Y.; Ehsan, M.K.; Mumtaz, S. Optimal resource allocation and task segmentation in iot enabled mobile edge cloud. IEEE Trans. Veh. Technol. 2021, 70, 13294–13303. [Google Scholar] [CrossRef]
- Mahmood, A.; Vu, T.; Khan, W.U.; Chatzinotas, S.; Ottersten, B. Optimizing Computational and Communication Resources for MEC Network Empowered UAV-RIS Communications. TechRxiv 2022. [Google Scholar] [CrossRef]
- Mahmood, A.; Ahmed, A.; Naeem, M.; Amirzada, M.R.; Al-Dweik, A. Weighted utility aware computational overhead minimization of wireless power mobile edge cloud. Comput. Commun. 2022, 190, 178–189. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Mahmood, A.; Ahmed, A.; Naeem, M.; Hong, Y. Partial offloading in energy harvested mobile edge computing: A direct search approach. IEEE Access 2020, 8, 36757–36763. [Google Scholar] [CrossRef]
- Renzo, M.D.; Debbah, M.; Phan-Huy, D.T.; Zappone, A.; Alouini, M.S.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.U.; Lagunas, E.; Ali, Z.; Javed, M.A.; Ahmed, M.; Chatzinotas, S.; Ottersten, B.; Popovski, P. Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces. arXiv 2022, arXiv:2203.16907. [Google Scholar]
- Ihsan, A.; Chen, W.; Asif, M.; Khan, W.U.; Wu, Q.; Li, J. Energy-efficient IRS-aided NOMA beamforming for 6G wireless communications. arXiv 2022, arXiv:2203.16099. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Khan, W.U.; Lagunas, E.; Ali, Z.; Chatzinotas, S.; Ottersten, B. Integration of NOMA with reflecting intelligent surfaces: A multi-cell optimization with SIC decoding errors. arXiv 2022, arXiv:2205.03248. [Google Scholar]
- Lin, Z.; Lin, M.; Wang, J.B.; De Cola, T.; Wang, J. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- Khan, W.U.; Jameel, F.; Sidhu, G.A.S.; Ahmed, M.; Li, X.; Jäntti, R. Multiobjective optimization of uplink NOMA-enabled vehicle-to-infrastructure communication. IEEE Access 2020, 8, 84467–84478. [Google Scholar] [CrossRef]
- Jameel, F.; Khan, W.U.; Shah, S.T.; Ristaniemi, T. Towards intelligent IoT networks: Reinforcement learning for reliable backscatter communications. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Khan, W.U.; Ali, Z.; Waqas, M.; Sidhu, G.A.S. Efficient power allocation with individual QoS guarantees in future small-cell networks. AEU-Int. J. Electron. Commun. 2019, 105, 36–41. [Google Scholar] [CrossRef]
- Khan, W.U.; Liu, J.; Jameel, F.; Khan, M.T.R.; Ahmed, S.H.; Jäntti, R. Secure backscatter communications in multi-cell NOMA networks: Enabling link security for massive IoT networks. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Waikoloa, HI, USA, 9–13 December 2019; pp. 213–218. [Google Scholar]
- Jameel, F.; Khan, W.U.; Jamshed, M.A.; Pervaiz, H.; Abbasi, Q.; Jäntti, R. Reinforcement learning for scalable and reliable power allocation in SDN-based backscatter heterogeneous network. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Waikoloa, HI, USA, 9–13 December 2019; pp. 1069–1074. [Google Scholar]
- Khan, W.U.; Li, X.; Ihsan, A.; Ali, Z.; Elhalawany, B.M.; Sidhu, G.A.S. Energy efficiency maximization for beyond 5G NOMA-enabled heterogeneous networks. Peer-to-Peer Netw. Appl. 2021, 14, 3250–3264. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, M.; Wang, X.; Wang, L.; Li, J. Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 2016, 64, 4268–4282. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, Y.; Guan, K.; Kilper, D.; Luo, H.; Wu, D.O. Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [Google Scholar] [CrossRef]
- Sardellitti, S.; Scutari, G.; Barbarossa, S. Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans. Signal Inf. Process. Over Netw. 2015, 1, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint computation offloading and user association in multi-task mobile edge computing. IEEE Trans. Veh. Technol. 2018, 67, 12313–12325. [Google Scholar] [CrossRef]
- Ouyang, T.; Zhou, Z.; Chen, X. Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 2018, 36, 2333–2345. [Google Scholar] [CrossRef] [Green Version]
- Sheng, M.; Wang, Y.; Wang, X.; Li, J. Energy-efficient multiuser partial computation offloading with collaboration of terminals, radio access network, and edge server. IEEE Trans. Commun. 2019, 68, 1524–1537. [Google Scholar] [CrossRef]
- Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 2015, 24, 2795–2808. [Google Scholar] [CrossRef]
- Yang, K.; Jiang, T.; Shi, Y.; Ding, Z. Federated learning via over-the-air computation. IEEE Trans. Wirel. Commun. 2020, 19, 2022–2035. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Zhang, R. Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization. IEEE Wirel. Commun. Lett. 2019, 9, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Tang, W.; Jin, S.; Wen, C.K.; Ma, X. Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans. Veh. Technol. 2019, 68, 8238–8242. [Google Scholar] [CrossRef] [Green Version]
- Abeywickrama, S.; Zhang, R.; Wu, Q.; Yuen, C. Intelligent reflecting surface: Practical phase shift model and beamforming optimization. IEEE Trans. Commun. 2020, 68, 5849–5863. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted sum-rate optimization for intelligent reflecting surface enhanced wireless networks. arXiv 2019, arXiv:1905.07920. [Google Scholar]
- Yang, Y.; Zheng, B.; Zhang, S.; Zhang, R. Intelligent reflecting surface meets OFDM: Protocol design and rate maximization. IEEE Trans. Commun. 2020, 68, 4522–4535. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Abdu, T.S.; Kisseleff, S.; Lagunas, E.; Chatzinotas, S. Flexible resource optimization for GEO multibeam satellite communication system. IEEE Trans. Wirel. Commun. 2021, 20, 7888–7902. [Google Scholar] [CrossRef]
- Chen, G.; Wu, Q. IRS Aided MEC Systems with Binary Offloading: A Unified Framework for Dynamic IRS Beamforming. arXiv 2022, arXiv:2205.14661. [Google Scholar]
Name | Symbol | Value |
---|---|---|
Transmission Bandwidth | B | 20 MHz |
Maximum Transmission Power | W | |
Noise Power | dBm | |
Static Circuit Power | 90 W/Gcycle | |
Maximum battery Capacity | J |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarfraz, M.; Alshahrani, H.M.; Tarmissi, K.; Alshahrani, H.; Elfaki, M.A.; Hamza, M.A.; Nauman, A.; Khurshaid, T. Intelligent Reflecting Surfaces Enhanced Mobile Edge Computing: Minimizing the Maximum Computational Time. Sensors 2022, 22, 8719. https://doi.org/10.3390/s22228719
Sarfraz M, Alshahrani HM, Tarmissi K, Alshahrani H, Elfaki MA, Hamza MA, Nauman A, Khurshaid T. Intelligent Reflecting Surfaces Enhanced Mobile Edge Computing: Minimizing the Maximum Computational Time. Sensors. 2022; 22(22):8719. https://doi.org/10.3390/s22228719
Chicago/Turabian StyleSarfraz, Mubashar, Haya Mesfer Alshahrani, Khaled Tarmissi, Hussain Alshahrani, Mohamed Ahmed Elfaki, Manar Ahmed Hamza, Ali Nauman, and Tahir Khurshaid. 2022. "Intelligent Reflecting Surfaces Enhanced Mobile Edge Computing: Minimizing the Maximum Computational Time" Sensors 22, no. 22: 8719. https://doi.org/10.3390/s22228719