End-to-End Network for Pedestrian Detection, Tracking and Re-Identification in Real-Time Surveillance System
Abstract
:1. Introduction
- The network structure of the YOLOv5-Lite model is improved, and BiFPN is used for cross-scale feature fusion, which significantly improves the performance of pedestrian detection.
- The network structure of the Fastreid algorithm is improved to increase the speed of the extraction of pedestrian features; thus, the overall pedestrian re-identification efficiency is improved.
- The tracking strategy is optimized by using an improved Kalman filter algorithm and adding linear compensation. The improved Deepsort algorithm is used to track the re-identified pedestrian, and the tracking performance is significantly improved in all metrics.
2. Related Work
2.1. Object Detection
2.1.1. Anchor-Based Methods
2.1.2. Anchor-Free Methods
2.2. Multi-Object Tracking
2.3. Pedestrian Re-Identification
3. Overview of the Framework
4. Methods
4.1. Pedestrian Detection
- Adding residual connections: The intention is to enhance the representation of features by implementing simple residual operations, adding a jump connection between an input node and an output node at the same level, and fusing more features without considerably increasing the computational cost.
- Removing the nodes of single input edges: Since the nodes of single input edges are not fused, they have less information and do not contribute to a considerable extent to the final fusion, and removing them also reduces the computation.
4.2. Pedestrian Tracking
4.3. Pedestrian Re-Identification
5. Experiment Results
- Operating system: Linux
- Python version: 3.8.10
- Number of CPU: 24
- Number of GPU: 1
- GPU type: NVIDIA GeForce RTX 3060
5.1. YOLOv5-Lite Experimental Analysis
5.2. Deepsort Experimental Analysis
5.3. Fastreid Experimental Analysis
5.4. System Experimental Analysis
5.5. System Showcase
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Song, H.; Cui, H. Pedestrian abnormal event detection based on multi-feature fusion in traffic video. Optik 2018, 154, 22–32. [Google Scholar] [CrossRef]
- Shu, X.; Yuan, D.; Liu, Q.; Liu, J. Adaptive weight part-based convolutional network for person re-identification. Multimed. Tools Appl. 2020, 79, 23617–23632. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Liu, S.; Xie, Y.; Durrani, T.S. Part-guided graph convolution networks for person re-identification. Pattern Recognit. 2021, 120, 108155. [Google Scholar] [CrossRef]
- Hampapur, A.; Brown, L.; Feris, R.; Senior, A.; Shu, C.F.; Tian, Y.; Zhai, Y.; Lu, M. Searching surveillance video. In Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, London, UK, 5–7 September 2007; pp. 75–80. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 5, 1106–1114. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, D.; Prabhakar, M. An effiecient human tracking system using Haar-like and hog feature extraction. Clust. Comput. 2019, 22, 2993–3000. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [Green Version]
- Tokmakov, P.; Li, J.; Burgard, W.; Gaidon, A. Learning to track with object permanence. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10860–10869. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1922–1933. [Google Scholar] [CrossRef]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790. [Google Scholar]
- Duan, K.; Xie, L.; Qi, H.; Bai, S.; Huang, Q.; Tian, Q. Corner proposal network for anchor-free, two-stage object detection. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 399–416. [Google Scholar]
- Long, X.; Deng, K.; Wang, G.; Zhang, Y.; Dang, Q.; Gao, Y.; Shen, H.; Ren, J.; Han, S.; Ding, E.; et al. PP-YOLO: An effective and efficient implementation of object detector. arXiv 2020, arXiv:2007.12099. [Google Scholar]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2778–2788. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Chen, Q.; Wang, Y.; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You only look one-level feature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13039–13048. [Google Scholar]
- Panigrahi, S.; Raju, U. MS-ML-SNYOLOv3: A robust lightweight modification of SqueezeNet based YOLOv3 for pedestrian detection. Optik 2022, 260, 169061. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Li, Y.; Chen, Y.; Wang, N.; Zhang, Z. Scale-aware trident networks for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6054–6063. [Google Scholar]
- Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W.; Tomizuka, M.; Li, L.; Yuan, Z.; Wang, C.; et al. Sparse r-cnn: End-to-end object detection with learnable proposals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 14454–14463. [Google Scholar]
- Dong, H.; Song, K.; He, Y.; Xu, J.; Yan, Y.; Meng, Q. PGA-Net: Pyramid feature fusion and global context attention network for automated surface defect detection. IEEE Trans. Ind. Inform. 2019, 16, 7448–7458. [Google Scholar] [CrossRef]
- Leng, J.; Liu, Y. Context augmentation for object detection. Appl. Intell. 2022, 52, 2621–2633. [Google Scholar] [CrossRef]
- Xiong, J.; Zhu, L.; Ye, L.; Li, J. Attention aware cross faster RCNN model and simulation. Wirel. Netw. 2021, 1–13. [Google Scholar] [CrossRef]
- Luo, J.Q.; Fang, H.S.; Shao, F.M.; Zhong, Y.; Hua, X. Multi-scale traffic vehicle detection based on faster R–CNN with NAS optimization and feature enrichment. Def. Technol. 2021, 17, 1542–1554. [Google Scholar] [CrossRef]
- Zhao, G.; Ge, W.; Yu, Y. GraphFPN: Graph feature pyramid network for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2763–2772. [Google Scholar]
- Xie, J.; Pang, Y.; Nie, J.; Cao, J.; Han, J. Latent Feature Pyramid Network for Object Detection. IEEE Trans. Multimed. 2022. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Liu, Z.; Chan, A.B. A generalized loss function for crowd counting and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021; pp. 1974–1983. [Google Scholar]
- Ge, Z.; Jie, Z.; Huang, X.; Li, C.; Yoshie, O. Delving deep into the imbalance of positive proposals in two-stage object detection. Neurocomputing 2021, 425, 107–116. [Google Scholar] [CrossRef]
- Xia, R.; Li, G.; Huang, Z.; Meng, H.; Pang, Y. CBASH: Combined Backbone and Advanced Selection Heads with Object Semantic Proposals for Weakly Supervised Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6502–6514. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Pang, Y.; Wang, T.; Anwer, R.M.; Khan, F.S.; Shao, L. Efficient featurized image pyramid network for single shot detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7336–7344. [Google Scholar]
- Wu, S.; Yang, J.; Wang, X.; Li, X. Iou-balanced loss functions for single-stage object detection. Pattern Recognit. Lett. 2022, 156, 96–103. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, F.; Liu, C.; Ji, X.; Ye, Q. Learning to match anchors for visual object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3096–3109. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.B.; Dai, B.M.; Tang, J.; Luo, B.; Wang, W.Q.; Lv, K. A refined single-stage detector with feature enhancement and alignment for oriented objects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8898–8908. [Google Scholar] [CrossRef]
- Luo, Z.; Yu, L.; Mo, X.; Li, Y.; Jia, L.; Fan, H.; Sun, J.; Liu, S. EBSR: Feature enhanced burst super-resolution with deformable alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021; pp. 471–478. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Huang, L.; Yang, Y.; Deng, Y.; Yu, Y. Densebox: Unifying landmark localization with end to end object detection. arXiv 2015, arXiv:1509.04874. [Google Scholar]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar]
- Liu, W.; Liao, S.; Ren, W.; Hu, W.; Yu, Y. High-level semantic feature detection: A new perspective for pedestrian detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5187–5196. [Google Scholar]
- Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process. 2020, 29, 7389–7398. [Google Scholar] [CrossRef]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 6569–6578. [Google Scholar]
- Zhou, X.; Zhuo, J.; Krahenbuhl, P. Bottom-up object detection by grouping extreme and center points. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 850–859. [Google Scholar]
- Yang, Z.; Liu, S.; Hu, H.; Wang, L.; Lin, S. Reppoints: Point set representation for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 9657–9666. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021; pp. 13029–13038. [Google Scholar]
- Li, W.; Huang, L. YOLOSA: Object detection based on 2D local feature superimposed self-attention. arXiv 2022, arXiv:2206.11825. [Google Scholar] [CrossRef]
- Cao, J.; Weng, X.; Khirodkar, R.; Pang, J.; Kitani, K. Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking. arXiv 2022, arXiv:2203.14360. [Google Scholar]
- Du, Y.; Song, Y.; Yang, B.; Zhao, Y. Strongsort: Make deepsort great again. arXiv 2022, arXiv:2202.13514. [Google Scholar]
- Chen, M.; Liao, Y.; Liu, S.; Wang, F.; Hwang, J.N. TR-MOT: Multi-Object Tracking by Reference. arXiv 2022, arXiv:2203.16621. [Google Scholar]
- Pang, J.; Qiu, L.; Li, X.; Chen, H.; Li, Q.; Darrell, T.; Yu, F. Quasi-dense similarity learning for multiple object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021; pp. 164–173. [Google Scholar]
- Dadgar, A.; Baleghi, Y.; Ezoji, M. Multi-view data fusion in multi-object tracking with probability density-based ordered weighted aggregation. Optik 2022, 262, 169279. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE international conference on image processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Li, J.; Ding, Y.; Wei, H. SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking. Sensors 2022, 22, 5863. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, Z.; Zhou, X.; Li, B.; Zhu, S.; Hu, W. Rethinking the competition between detection and ReID in multiobject tracking. IEEE Trans. Image Process. 2022, 31, 3182–3196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, C.; Wang, X.; Zeng, W.; Liu, W. Fairmot: On the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 2021, 129, 3069–3087. [Google Scholar] [CrossRef]
- Hyun, J.; Kang, M.; Wee, D.; Yeung, D.Y. Detection Recovery in Online Multi-Object Tracking with Sparse Graph Tracker. arXiv 2022, arXiv:2205.00968. [Google Scholar]
- Luo, R.; Wei, J.; Lin, Q. VariabilityTrack: Multi-Object Tracking with Variable Speed Object Movement. arXiv 2022, arXiv:2203.06424. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. Bytetrack: Multi-object tracking by associating every detection box. arXiv 2021, arXiv:2110.06864. [Google Scholar]
- Guo, J.; Yuan, Y.; Huang, L.; Zhang, C.; Yao, J.G.; Han, K. Beyond human parts: Dual part-aligned representations for person re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 3642–3651. [Google Scholar]
- Sun, Y.; Xu, Q.; Li, Y.; Zhang, C.; Li, Y.; Wang, S.; Sun, J. Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 393–402. [Google Scholar]
- He, T.; Shen, X.; Huang, J.; Chen, Z.; Hua, X.S. Partial person re-identification with part-part correspondence learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021; pp. 9105–9115. [Google Scholar]
- Chen, X.; Zheng, X.; Lu, X. Bidirectional interaction network for person re-identification. IEEE Trans. Image Process. 2021, 30, 1935–1948. [Google Scholar] [CrossRef]
- Wu, D.; Ye, M.; Lin, G.; Gao, X.; Shen, J. Person re-identification by context-aware part attention and multi-head collaborative learning. IEEE Trans. Inf. Forensics Secur. 2021, 17, 115–126. [Google Scholar] [CrossRef]
- Jin, H.; Lai, S.; Qian, X. Occlusion-sensitive person re-identification via attribute-based shift attention. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 2170–2185. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Liu, S. Person re-identification using heterogeneous local graph attention networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021; pp. 12136–12145. [Google Scholar]
- Xia, B.N.; Gong, Y.; Zhang, Y.; Poellabauer, C. Second-order non-local attention networks for person re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 3760–3769. [Google Scholar]
- Hussain, M.A.; Tsai, T.H. An efficient and fast softmax hardware architecture (EFSHA) for deep neural networks. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Washington, DC, USA, 6–9 June 2021; pp. 1–4. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Du, Y.; Wan, J.; Zhao, Y.; Zhang, B.; Tong, Z.; Dong, J. GIAOTracker: A comprehensive framework for MCMOT with global information and optimizing strategies in VisDrone 2021. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2809–2819. [Google Scholar]
- Yang, L.; Luo, P.; Loy, C.C.; Tang, X. A large-scale car dataset for fine-grained categorization and verification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Hongye, L.; Tian, Y.; Wang, Y.; Pang, L.; Huang, T. Deep Relative Distance Learning: Tell the Difference between Similar Vehicles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lou, Y.; Bai, Y.; Liu, J.; Wang, S.; Duan, L.Y. VERI-Wild: A Large Dataset and a New Method for Vehicle Re-Identification in the Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Alfasly, S.A.S.; Hu, Y.; Li, H.; Tiancai, L.; Jin, X.; Beibei, L.; Qingli, Z. Multi-Label-Based Similarity Learning for Vehicle Re-Identification. IEEE Access 2019, 7, 162605–162616. [Google Scholar] [CrossRef]
Model | Input Size | Flops | Size | Precision | Recall | mAP_0.5 | mAP_0.5:0.95 | FPS |
---|---|---|---|---|---|---|---|---|
YOLOv5 | 16.5 | 28 | ||||||
tph-YOLOv5 | 16.2 | 25 | ||||||
YOLOv5-Lite | 15.6 | 42 | ||||||
Ours | 15.7 | 41 |
Dataset | Total Number | Train Set | Test Set |
---|---|---|---|
WiderPerson | 13,382 | 9000 | 4382 |
CUHK Occlusion | 1063 | 850 | 213 |
Model | Input Size | Flops | Precision | Recall | mAP_0.5 | mAP_0.5:0.95 |
---|---|---|---|---|---|---|
YOLOv4-tiny | 6.48 | |||||
YOLOv3-tiny | 13.0 | |||||
YOLOv5-Lite | 15.6 | |||||
Ours | 15.7 |
Model | Input Size | Flops | Precision | Recall | mAP_0.5 | mAP_0.5:0.95 |
---|---|---|---|---|---|---|
YOLOv4-tiny | 6.48 | |||||
YOLOv3-tiny | 13.0 | |||||
YOLOv5-Lite | 15.6 | |||||
Ours | 15.7 |
Method | IDF1 | IDP | IDR | RCll | PRCn | FAR | GT |
---|---|---|---|---|---|---|---|
Sort | 500 | ||||||
Deepsort | 500 | ||||||
Ours | 500 |
Method | MT | ML | FP | FN | IDs | FM | MOTA | MOTP |
---|---|---|---|---|---|---|---|---|
Sort | 120 | 145 | 5871 | 17,573 | 544 | 984 | ||
Deepsort | 114 | 195 | 14,023 | 18,150 | 500 | 1117 | ||
Ours | 420 | 27 | 521 | 1007 | 134 | 82 |
Method | IDF1 | IDP | IDR | RCll | PRCn | FAR | GT |
---|---|---|---|---|---|---|---|
Sort | 517 | ||||||
Deepsort | 517 | ||||||
Ours | 517 |
Method | MT | ML | FP | FN | IDs | FM | MOTA | MOTP |
---|---|---|---|---|---|---|---|---|
Sort | 41 | 271 | 12,916 | 68,904 | 1090 | 1493 | ||
Deepsort | 30 | 307 | 2214 | 75,817 | 239 | 1190 | ||
Ours | 490 | 1 | 489 | 1170 | 258 | 45 |
Method | RCll | PRCn | FAR | FP | FN | MODA | MODP |
---|---|---|---|---|---|---|---|
Sort | 99.1 | 55.0 | 10.14 | 53,917 | 626 | 17.8 | |
Deepsort | 99.3 | 99.3 | 0.08 | 439 | 492 | 98.6 | |
Ours | 99.2 | 99.3 | 0.09 | 489 | 508 | 98.5 |
Methods | Small | Medium | Large | |||
---|---|---|---|---|---|---|
mAP | R-1 | mAP | R-1 | mAP | R-1 | |
GoogLeNet [75] | 24.3 | 57.3 | 24.2 | 53.2 | 21.5 | 44.6 |
DRDL [76] | 22.5 | 57.0 | 19.3 | 51.9 | 14.8 | 44.6 |
FDA-Net [77] | 35.1 | 64.0 | 29.8 | 57.8 | 22.8 | 49.4 |
MLSL [78] | 46.3 | 86.0 | 42.4 | 83.0 | 36.6 | 77.5 |
Fastreid | 87.7 | 96.4 | 83.5 | 95.1 | 77.3 | 92.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, M.; Song, Y.; Zhao, J.; Wang, X.; Lyu, J.; Xu, J.; Yan, W. End-to-End Network for Pedestrian Detection, Tracking and Re-Identification in Real-Time Surveillance System. Sensors 2022, 22, 8693. https://doi.org/10.3390/s22228693
Lei M, Song Y, Zhao J, Wang X, Lyu J, Xu J, Yan W. End-to-End Network for Pedestrian Detection, Tracking and Re-Identification in Real-Time Surveillance System. Sensors. 2022; 22(22):8693. https://doi.org/10.3390/s22228693
Chicago/Turabian StyleLei, Mingwei, Yongchao Song, Jindong Zhao, Xuan Wang, Jun Lyu, Jindong Xu, and Weiqing Yan. 2022. "End-to-End Network for Pedestrian Detection, Tracking and Re-Identification in Real-Time Surveillance System" Sensors 22, no. 22: 8693. https://doi.org/10.3390/s22228693
APA StyleLei, M., Song, Y., Zhao, J., Wang, X., Lyu, J., Xu, J., & Yan, W. (2022). End-to-End Network for Pedestrian Detection, Tracking and Re-Identification in Real-Time Surveillance System. Sensors, 22(22), 8693. https://doi.org/10.3390/s22228693