Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guthrie, B.; Jagim, A.R.; Jones, M.T. Ready or Not, Here I Come: A Scoping Review of Methods Used to Assess Player Readiness Via Indicators of Neuromuscular Function in Football Code Athletes. Strength Cond. J. 2022. Ahead of Print. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Lockie, R.G.; Loturco, I. Practices of strength and conditioning coaches in professional sports: A systematic review. Biol. Sport 2021, 39, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.W.; Smith, A.; Macnaughton, L.S.; French, D.N. Strength and Conditioning and Concurrent Training Practices in Elite Rugby Union. J. Strength Cond. Res. 2016, 30, 3354–3366. [Google Scholar] [CrossRef] [PubMed]
- Zabaloy, S.; Tondelli, E.; Pereira, L.A.; Freitas, T.T.; Loturco, I. Training and testing practices of strength and conditioning coaches in Argentinian Rugby Union. Int. J. Sport. Sci. Coach. 2022, 17, 1331–1344. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2021, 38, 377–390. [Google Scholar] [CrossRef]
- Badby, A.J.; Mundy, P.; Comfort, P.; Lake, J.; McMahon, J.J. Agreement among countermovement jump force-time variables obtained from a wireless dual force plate system and an industry gold standard system. In Proceedings of the International Society of Biomechanics in Sports, Liverpool, UK, 19–23 July 2022. [Google Scholar]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Dos’ Santos, T.; Jones, P.; Thomasson, M.; Comfort, P. Countermovement jump standards in rugby league: What is a ‘good’ performance? J. Strength Cond. Res. 2022, 36, 1691–1698. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Ripley, N.J.; Comfort, P. Vertical jump testing in rugby league: A rationale for calculating take-off momentum. J. Appl. Biomech. 2020, 36, 370–374. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.; Comfort, P. Identifying and reporting position-specific countermovement jump outcome and phase characteristics within rugby league. PLoS ONE 2022, 17, e0265999. [Google Scholar] [CrossRef]
- Ireton, M.R.E.; Till, K.; Weaving, D.; Jones, B. Differences in the Movement Skills and Physical Qualities of Elite Senior & Academy Rugby League Players. J. Strength Cond. Res. 2019, 33, 1328–1338. [Google Scholar]
- Till, K.; Scantlebury, S.; Jones, B. Anthropometric and Physical Qualities of Elite Male Youth Rugby League Players. Sport. Med. 2017, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Hansen, K.T. Strength and power predictors of sports speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Correlates of Tackling Ability in High-Performance Rugby League Players. J. Strength Cond. Res. 2011, 25, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Relative importance of physiological, anthropometric, and skill qualities to team selection in professional rugby league. J. Sport. Sci. 2011, 29, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Murphy, S.; Rej, S.J.; Comfort, P. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. Int. J. Sport. Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Cormack, S.J.; Gill, N.D. Strength and Power Profiling of Athletes: Selecting Tests and How to Use the Information for Program Design. Strength Cond. J. 2013, 35, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Lockie, R.G.; Risso, F.G.; Giuliano, D.V.; Orjalo, A.J.; Jalilvand, F. Practical Fitness Profiling Using Field Test Data for Female Elite-Level Collegiate Soccer Players: A Case Analysis of a Division I Team. Strength Cond. J. 2018, 40, 58–71. [Google Scholar] [CrossRef]
- Turner, A.N.; Jones, B.; Stewart, P.; Bishop, C.; Parmar, N.; Chavda, S.; Read, P. Total Score of Athleticism: Holistic Athlete Profiling to Enhance Decision-Making. Strength Cond. J. 2019, 41, 91–101. [Google Scholar] [CrossRef]
- Howarth, D.J.; Cohen, D.D.; McLean, B.D.; Coutts, A.J. Establishing the Noise: Interday Ecological Reliability of Countermovement Jump Variables in Professional Rugby Union Players. J. Strength Cond. Res. 2022, 36, 3159–3166. [Google Scholar] [CrossRef]
- Bridges, A.J.; Holler, K.A. How many is enough? Determining optimal sample sizes for normative studies in pediatric neuropsychology. Child Neuropsychol. 2007, 13, 528–538. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Weakley, J.; García-Pinillos, F.; Rojas, F.J.; García-Ramos, A. Influence of countermovement depth on the countermovement jump-derived reactive strength index modified. Eur. J. Sport Sci. 2021, 21, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical jump performance is affected by the velocity and depth of the countermovement. Sport. Biomech 2021, 20, 1015–1030. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sixto, A.; McMahon, J.J.; Floría, P. Verbal instructions affect reactive strength index modified and time-series waveforms in basketball players. Sport. Biomech. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a Criterion Method to Determine Peak Mechanical Power Output in a Countermovement Jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Harry, J.R.; Blinch, J.; Barker, L.A.; Krzyszkowski, J.; Chowning, L. Low-Pass Filter Effects on Metrics of Countermovement Vertical Jump Performance. J. Strength Cond. Res. 2022, 36, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. The effect of barbell load on vertical jump landing force-time characteristics. J. Strength Cond. Res. 2021, 35, 25–32. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Fernandes, J.F.T.; Rojas, F.J.; García-Ramos, A. Reliability and Magnitude of Countermovement Jump Performance Variables: Influence of the Take-off Threshold. Meas. Phys. Educ. Exerc. Sci. 2021, 25, 227–235. [Google Scholar] [CrossRef]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of Reactive Strength Index Modified on Force- and Power-Time Curves. Int. J. Sport. Physiol. Perform. 2018, 13, 220–227. [Google Scholar] [CrossRef]
- Linthorne, N.P. The correlation between jump height and mechanical power in a countermovement jump is artificially inflated. Sport. Biomech. 2021, 20, 3–21. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Bartlett, J.D.; Gastin, P.B. Red, Amber, or Green? Athlete Monitoring in Team Sport: The Need for Decision-Support Systems. Int. J. Sport. Physiol. Perform. 2017, 12, S273–S279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.; Newton, R. Comparison of Lower Body Strength, Power, Acceleration, Speed, Agility, and Sprint Momentum to Describe and Compare Playing Rank among Professional Rugby League Players. J. Strength Cond. Res. 2008, 22, 153. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, D.; Murata, M.; Inaba, Y. Effect of Landing Posture on Jump Height Calculated from Flight Time. Appl. Sci. 2020, 10, 776. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.A.; Drake, D. Improving the signal-to-noise ratio when monitoring countermovement jump performance. J. Strength Cond. Res. 2021, 35, 85–90. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Mercer, R.A.J.; Russell, J.L.; McGuigan, L.C.; Coutts, A.J.; Strack, D.S.; McLean, B.D. Finding the Signal in the Noise—Interday Reliability and Seasonal Sensitivity of 84 Countermovement Jump Variables in Professional Basketball Players. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Glassbrook, D.J.; Doyle, T.L.A.; Alderson, J.A.; Fuller, J.T. The Demands of Professional Rugby League Match-Play: A Meta-analysis. Sport. Med.-Open 2019, 5, 24. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Physical demands of professional rugby league training and competition using microtechnology. J. Sci. Med. Sport 2012, 15, 80–86. [Google Scholar] [CrossRef]
- Cummins, C.; Orr, R. Analysis of physical collisions in elite national rugby league match play. Int. J. Sport. Physiol. Perform. 2015, 10, 732–739. [Google Scholar] [CrossRef]
- Redman, K.J.; Wade, L.; Kelly, V.G.; Connick, M.J.; Beckman, E.M. Predicting Rugby League Tackle Outcomes Using Strength and Power Principal Components. Int. J. Sport. Physiol. Perform. 2022, 17, 278–285. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McMahon, J.J.; Ripley, N.J.; Comfort, P. Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players. Sensors 2022, 22, 8669. https://doi.org/10.3390/s22228669
McMahon JJ, Ripley NJ, Comfort P. Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players. Sensors. 2022; 22(22):8669. https://doi.org/10.3390/s22228669
Chicago/Turabian StyleMcMahon, John J., Nicholas J. Ripley, and Paul Comfort. 2022. "Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players" Sensors 22, no. 22: 8669. https://doi.org/10.3390/s22228669
APA StyleMcMahon, J. J., Ripley, N. J., & Comfort, P. (2022). Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players. Sensors, 22(22), 8669. https://doi.org/10.3390/s22228669