Smart Electrically Assisted Bicycles as Health Monitoring Systems: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Procedure
2.2. Inclusion Criteria
3. Results
3.1. Sensors
3.2. Architectures
3.3. Study Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
BPM | Beat Per Minute |
RPM | Revolution Per Minute |
ECG | Electrocardiogram |
GPS | Global Positioning System |
HMI | Human Machine Interface |
MDPI | Multidisciplinary Digital Publishing Institute |
SOF | State of Fatigue |
PC | Personal Computer |
References
- Glusac, E. Farther, Faster and No Sweat: Bike-Sharing and the E-Bike Boom. New York Times. 2 March 2021. Available online: https://www.nytimes.com/2021/03/02/travel/ebikes-bike-sharing-us.html (accessed on 27 September 2021).
- Reid, C. E-Bike Sales to Grow from 3.7 Million to 17 Million Per Year by 2030, Forecast Industry Experts. Available online: https://www.forbes.com/sites/carltonreid/2020/12/02/e-bike-sales-to-grow-from-37-million-to-17-million-per-year-by-2030-forecast-industry-experts/ (accessed on 27 September 2021).
- Heinen, E.; van Wee, B.; Maat, K. Commuting by Bicycle: An Overview of the Literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Fishman, E.; Cherry, C. E-bikes in the Mainstream: Reviewing a Decade of Research. Transp. Rev. 2016, 36, 72–91. [Google Scholar] [CrossRef]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. 2020, 5, 100121. [Google Scholar] [CrossRef]
- Bourne, J.E.; Sauchelli, S.; Perry, R.; Page, A.; Leary, S.; England, C.; Cooper, A.R. Health benefits of electrically-assisted cycling: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 116. [Google Scholar] [CrossRef]
- World Health Organization. Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 28 September 2021).
- World Health Organization. Non Communicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 24 September 2021).
- Australian Government Department of Health Managing Chronic Conditions. Available online: https://www.health.gov.au/health-topics/chronic-conditions/managing-chronic-conditions (accessed on 24 September 2021).
- Centers for Disease Control and Prevention About Chronic Diseases | CDC. Available online: https://www.cdc.gov/chronicdisease/about/index.htm (accessed on 24 September 2021).
- World Health Organization. The Top 10 Causes of Death. Available online: Used under a Creative Commons Attribution-ShareAlike License: CC BY-NC-SA 3.0 IGO. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 24 September 2021).
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Saltin, B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25, 1–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi-Abdar, H.; Ridgel, A.L.; Discenzo, F.M.; Loparo, K.A. Design and Development of a Smart Exercise Bike for Motor Rehabilitation in Individuals With Parkinson’s Disease. IEEE/ASME Trans. Mechatron. 2016, 21, 1650–1658. [Google Scholar] [CrossRef] [Green Version]
- Iosub, A.; Kirscher, J.; Rafaila, M.; Buzo, A.; Pelz, G.; Goras, L. Simulation-based approach to application fitness for an E-Bike. In Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016. [Google Scholar]
- Giliberto, M.; Arena, F.; Pau, G. A fuzzy-based Solution for Optimized Management of Energy Consumption in e-bikes. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2019, 10, 45–64. [Google Scholar] [CrossRef]
- Lee, J.-S.; Jiang, J.-W.; Sun, Y.-H. Design and simulation of control systems for electric-assist bikes. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 1736–1740. [Google Scholar]
- Guarisco, M.; Gao, F.; Paire, D. Autonomy and User Experience Enhancement Control of an Electrically Assisted Bicycle With Dual-Wheel Drive. IEEE Trans. Ind. Appl. 2017, 53, 1476–1484. [Google Scholar] [CrossRef]
- Anshory, I.; Hadidjaja, D.; Jakaria, R.B. Bldc Motor: Modeling And Optimization Speed Control Using Firefly Algorithm. Dinamik 2020, 25, 51–58. [Google Scholar] [CrossRef]
- Anshory, I.; Robandi, I. Monitoring and optimization of speed settings for Brushless Direct Current (BLDC) using Particle Swarm Optimization (PSO). In Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; pp. 243–248. [Google Scholar]
- Bergmann, L.; Leonhardt, S.; Greven, D.; Misgeld, B.J.E. Optimal assistive control of a pedal-electric drive unit. Control. Eng. Pract. 2021, 110, 104765. [Google Scholar] [CrossRef]
- Hsu, R.C.; Liu, C.-T.; Lee, W.-M.; Chen, C.-H. A Reinforcement Learning Based Power Assisted Method with Comfort of Riding for Light Electric Vehicle. In Proceedings of the 2010 IEEE 71st Vehicular Technology Conference, Taipei, Taiwan, 16–19 May 2010; IEEE: Taipei, Taiwan, 2010; pp. 1–5. [Google Scholar]
- Abhilash, D.S.H.; Wani, I.; JoSeptemberh, K.; Jha, R.; Haneesh, K.M. Power Efficient e-Bike with Terrain Adaptive Intelligence. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019; pp. 1148–1153. [Google Scholar]
- Chen, P.-C.; Chuang, H.-S.; Hsiao, C.-C.; Chang, S.-B. The velocity control with disturbance estimation for the E-Bike systems. In Proceedings of the 2011 International Conference on System Science and Engineering, Macau, China, 8–10 June 2011; pp. 171–176. [Google Scholar]
- Dumitrache, F.; Carp, M.C.; Pana, G. E-bike electronic control unit. In Proceedings of the 2016 IEEE 22nd International Symposium for Design and Technology in Electronic Packaging (SIITME), Oradea, Romania, 20–23 October 2016; pp. 248–251. [Google Scholar]
- Hatano, R.; Namikawa, D.; Minagawa, R.; Iwase, M. Experimental verification of effectiveness on driving force assist control based on repetitive control for electrically-assisted bicycles. In Proceedings of the 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC), Yokohama, Japan, 14–16 March 2014; pp. 237–241. [Google Scholar]
- Kai, Z.; Dejun, Y. A control approach adaptive to load and road slope for electric power assisted bicycle. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 3414–3418. [Google Scholar]
- Chen, P.; Lin, H.; Chang, S.; Huang, Y. The torque control of human power assisted electric bikes. In Proceedings of the 2010 International Conference on System Science and Engineering, Taipei, Taiwan, 1–3 July 2010; pp. 373–378. [Google Scholar]
- Zaghari, B.; Stuikys, A.; Weddell, A.S.; Beeby, S. Efficient Energy Conversion in Electrically Assisted Bicycles Using a Switched Reluctance Machine Under Torque Control. IEEE Access 2020, 8, 202401–202411. [Google Scholar] [CrossRef]
- Ceuca, E.; Pocan, I.; Pop, O. Electromagnetic compatibility analysis of the assembly e-bike—Power electronic converter with recovery function. In Proceedings of the 2016 39th International Spring Seminar on Electronics Technology (ISSE), Pilsen, Czech Republic, 18–22 May 2016; pp. 398–401. [Google Scholar]
- Sreehari, M.D.; Manikandan, K.; Pranjith, K.; Adithya, V.; Ram, M.B.J.; Indu, V.; Dharmana, M.M. Design and Analysis of E-Bike with Electrical Regeneration and Self-Balancing Assist. In Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 15–17 June 2020; pp. 119–124. [Google Scholar]
- Maier, O.; Krause, M.; Krauth, S.; Langer, N.; Pascher, P.; Wrede, J. Potential benefit of regenerative braking on electric bicycles. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 1417–1423. [Google Scholar]
- Castro, A.; Gaupp-Berghausen, M.; Dons, E.; Standaert, A.; Laeremans, M.; Clark, A.; Anaya-Boig, E.; Cole-Hunter, T.; Avila-Palencia, I.; Rojas-Rueda, D.; et al. Physical activity of electric bicycle users compared to conventional bicycle users and non-cyclists: Insights based on health and transport data from an online survey in seven European cities. Transp. Res. Interdiscip. Perspect. 2019, 1, 100017. [Google Scholar] [CrossRef]
- Alessio, H.M.; Reiman, T.; Kemper, B.; von Carlowitz, W.; Bailer, A.J.; Timmerman, K.L. Metabolic and Cardiovascular Responses to a Simulated Commute on an E-Bike. Transl. J. ACSM 2021, 6, e000155. [Google Scholar] [CrossRef]
- Langford, B.C.; Cherry, C.R.; Bassett, D.R.; Fitzhugh, E.C.; Dhakal, N. Comparing physical activity of pedal-assist electric bikes with walking and conventional bicycles. J. Transp. Health 2017, 6, 463–473. [Google Scholar] [CrossRef]
- Hoj, T.H.; Bramwell, J.J.; Lister, C.; Grant, E.; Crookston, B.T.; Hall, C.; West, J.H. Increasing Active Transportation Through E-Bike Use: Pilot Study Comparing the Health Benefits, Attitudes, and Beliefs Surrounding E-Bikes and Conventional Bikes. JMIR Public Health Surveill. 2018, 4, e10461. [Google Scholar] [CrossRef]
- Ambika Bhuvaneswari, C.; Muthumari, M. Design and realization of radio communication using LoRa & XBee module for an e-Bike. In Proceedings of the 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 13–15 December 2018; IEEE: Madurai, India, 2018; pp. 1–4. [Google Scholar]
- Gharghan, S.; Nordin, R.; Ismail, M. Energy-Efficient ZigBee-Based Wireless Sensor Network for Track Bicycle Performance Monitoring. Sensors 2014, 14, 15573–15592. [Google Scholar] [CrossRef]
- Ekelund, U.; Poortvliet, E.; Yngve, A.; Hurtig-Wennlöv, A.; Nilsson, A.; Sjöström, M. Heart rate as an indicator of the intensity of physical activity in human adolescents. Eur. J. Appl. Physiol. 2001, 85, 244–249. [Google Scholar] [CrossRef]
- Jeukendrup, A.; Diemen, A.V. Heart rate monitoring during training and competition in cyclists. J. Sports Sci. 1998, 16, 91–99. [Google Scholar] [CrossRef]
- Grant, C.C.; Murray, C.; Janse van Rensburg, D.C.; Fletcher, L. A comparison between heart rate and heart rate variability as indicators of cardiac health and fitness. Front. Physiol. 2013, 4, 337. [Google Scholar] [CrossRef] [Green Version]
- Oliva, F.; Sormani, P.; Contri, R.; Campana, C.; Carubelli, V.; Cirò, A.; Morandi, F.; Di Tano, G.; Mortara, A.; Senni, M.; et al. Heart rate as a prognostic marker and therapeutic target in acute and chronic heart failure. Int. J. Cardiol. 2018, 253, 97–104. [Google Scholar] [CrossRef]
- Kaur, B.; Durek, J.J.; O’Kane, B.L.; Tran, N.; Moses, S.; Luthra, M.; Ikonomidou, V.N. Heart rate variability (HRV): An indicator of stress. In Proceedings SPIE 9118, Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering XII; 91180V; SPIE: Baltimore, MD, USA, 2014. [Google Scholar] [CrossRef]
- ChuDuc, H.; NguyenPhan, K.; NguyenViet, D. A Review of Heart Rate Variability and its Applications. APCBEE Procedia 2013, 7, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Higashi, D.; Imai, T.; Ueno, A.; Miyashita, O. A Wearable capacitive heart-rate monitor for controlling electrically assisted bicycle. In Proceedings of the 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; pp. 1–6. [Google Scholar]
- Walker, W.; Praveen Aroul, A.L.; Bhatia, D. Mobile health monitoring systems. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 5199–5202. [Google Scholar]
- Ueno, A.; Miyashita, O.; Yoshida, T.; Yamamoto, J.; Lataire, P. A wearable ECG-HR detector and its application to automatic assist-mode selection of an electrically assisted bicycle. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6903–6906. [Google Scholar]
- Lee, C.-N.; Chan, L.; Yang, C.-Y.; Lee, G.-Y.; Ciou, C.-R. The design and implementation of the E-BIKE physiological monitoring prototype system for cyclists. In Proceedings of the IEEE iWEM2011, Taipei, Taiwan, 8–10 August 2011; pp. 161–165. [Google Scholar]
- Nagata, T.; Okada, S.; Makikawa, M. Electric motor assisted bicycle as an aerobic exercise machine. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 1933–1935. [Google Scholar]
- Kiryu, T.; Minagawa, H. Feasibility study on a perceived fatigue prediction dependent power control for an electrically assisted bicycle. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2088–2091. [Google Scholar]
- Theobalt, A.; Feodoroff, B.; Werth, D.; Loos, P. A Personalized and Context-Aware Mobile Assistance System for Cardiovascular Prevention and Rehabilitation. In Ambient Assisted Living; Wichert, R., Klausing, H., Eds.; Advanced Technologies and Societal Change; Springer: Berlin/Heidelberg, Germany, 2014; pp. 161–173. ISBN 978-3-642-37987-1. [Google Scholar]
- Blumenstein, T.; Zeitlmann, H.; Alves-Pinto, A.; Turova, V.; Lampe, R. Optimization of electric bicycle for youths with disabilities. SpringerPlus 2014, 3, 646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, J.; Rodrigues, F.; Pedrosa, D.; Afonso, J. Automatic Control of Cycling Effort Using Electric Bicycles and Mobile Devices. In World Congress on Engineering, WCE 2015; IAENG: Hong Kong, Chnia, 2015; ISBN 978-988-19253-4-3. [Google Scholar]
- Corno, M.; Giani, P.; Tanelli, M.; Savaresi, S.M. Human-in-the-Loop Bicycle Control via Active Heart Rate Regulation. IEEE Trans. Contr. Syst. Technol. 2015, 23, 1029–1040. [Google Scholar] [CrossRef]
- Corno, M.; Berretta, D.; Spagnol, P.; Savaresi, S.M. Design, Control, and Validation of a Charge-Sustaining Parallel Hybrid Bicycle. IEEE Trans. Contr. Syst. Technol. 2016, 24, 817–829. [Google Scholar] [CrossRef]
- Nath, S.; Sinha, S.; Gladence, L.M.; BevishJinila, Y.; Rajalakshmi, V. Health analysis of bicycle rider and security of bicycle using IoT. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 0802–0806. [Google Scholar]
- De La Iglesia, D.; Villarrubia, G.; De Paz, J.; Bajo, J. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm. Sensors 2017, 17, 2501. [Google Scholar] [CrossRef] [Green Version]
- Makarova, I.; Shubenkova, K.; Pashkevich, A.; Boyko, A. Smart-Bike as One of the Ways to Ensure Sustainable Mobility in Smart Cities. In Sensor Systems and Software; Magno, M., Ferrero, F., Bilas, V., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 205, pp. 187–198. ISBN 978-3-319-61562-2. [Google Scholar]
- Chandraprabha Dissanayake, V.S.; Kannangara, R.E.; Bigumjith Dias, M.U.; Kulasekera, A.L.; Jayaweera, N. An Intelligent Control System for an Electrically Power Assisted Cycle (EPAC). Am. J. Eng. Appl. Sci. 2018, 11, 986–995. [Google Scholar] [CrossRef] [Green Version]
- Siong Kwong, W.; Ubin, A.; Mohd Jenu, M.Z. Cyclist Monitoring System using NI myRIO-1900. MATEC Web Conf. 2018, 150, 01006. [Google Scholar] [CrossRef] [Green Version]
- Makarova, I.; Buyvol, P.; Shubenkova, K.; Tsybunov, E.; Boyko, A. Development of Intelligent Smart Bicycle Control System. In Proceedings of the 2018 IEEE East-West Design & Test Symposium (EWDTS), Kazan, Russia, 14–17 September 2018; pp. 1–8. [Google Scholar]
- Mayr, P.; Falgenhauer, M.; Modre-Osprian, R.; Hofmann, P.; Traninger, H.; Rath, M.; Schreier, G. HEALTHeBIKES-Smart E-Bike Prototype for Controlled Exercise in Telerehabilitation Programs. Stud. Health Technol. Inf. 2018, 248, 307–313. [Google Scholar]
- De La Iglesia, D.; De Paz, J.; Villarrubia González, G.; Barriuso, A.; Bajo, J.; Corchado, J. Increasing the Intensity over Time of an Electric-Assist Bike Based on the User and Route: The Bike Becomes the Gym. Sensors 2018, 18, 220. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, S.; Ordonez-Hurtado, R.; Pilla, F.; Russo, G.; Timoney, D.; Shorten, R. A Context-Aware E-Bike System to Reduce Pollution Inhalation While Cycling. IEEE Trans. Intell. Transport. Syst. 2019, 20, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Venkatanarayanan, A.; Vijayavel, A.; Rajagopal, A.; Nagaradjane, P. Design of sensor system for air pollution and human vital monitoring for connected cyclists. IET Commun. 2019, 13, 3181–3186. [Google Scholar] [CrossRef]
- Meyer, D.; Korber, M.; Senner, V.; Tomizuka, M. Regulating the Heart Rate of Human–Electric Hybrid Vehicle Riders Under Energy Consumption Constraints Using an Optimal Control Approach. IEEE Trans. Contr. Syst. Technol. 2019, 27, 2125–2138. [Google Scholar] [CrossRef]
- Rey-Barth, S.; Eychenne, C.; Rolland, C.; Pinsault, N.; Bosson, J. Use of a smart electrically assisted bicycle (VELIS) in the health field -Proof of concept. Med. Eng. Phys. 2020, 81, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Barrios, L.; Oldrati, P.; Santini, S.; Lutterotti, A. Evaluating the accuracy of heart rate sensors based on photoplethysmography for in-the-wild analysis. In Proceedings of the Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, Trento, Italy, 20–23 May 2019; ACM: Trento, Italy, 2019; pp. 251–261. [Google Scholar]
- Etiwy, M.; Akhrass, Z.; Gillinov, L.; Alashi, A.; Wang, R.; Blackburn, G.; Gillinov, S.M.; Phelan, D.; Gillinov, A.M.; Houghtaling, P.L.; et al. Accuracy of wearable heart rate monitors in cardiac rehabilitation. Cardiovasc. Diagn. 2019, 9, 262–271. [Google Scholar] [CrossRef]
- Zang, K.; Shen, J.; Huang, H.; Wan, M.; Shi, J. Assessing and Mapping of Road Surface Roughness based on GPS and Accelerometer Sensors on Bicycle-Mounted Smartphones. Sensors 2018, 18, 914. [Google Scholar] [CrossRef] [Green Version]
- Ferster, C.; Nelson, T.; Laberee, K.; Winters, M. Mapping bicycling exposure and safety risk using Strava Metro. Appl. Geogr. 2021, 127, 102388. [Google Scholar] [CrossRef]
- Iqbal, A.; Iqbal, A.; Ali, H.; Ehatisham-ul-Haq, M.; Arsalan, A.; Raheel, A. Fall Detection of Riders using Inertial Sensors: A Smart Helmet. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 620–624. [Google Scholar]
- Islam, M.M.; Ridwan, A.E.M.; Mary, M.M.; Siam, M.F.; Mumu, S.A.; Rana, S. Design and Implementation of a Smart Bike Accident Detection System. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 386–389. [Google Scholar]
- Murgano, E.; Caponetto, R.; Pappalardo, G.; Cafiso, S.D.; Severino, A. A Novel Acceleration Signal Processing Procedure for Cycling Safety Assessment. Sensors 2021, 21, 4183. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, F.; Kiefer, C. Smart e-bike monitoring system: Real-time open source and open hardware GPS assistance and sensor data for electrically-assisted bicycles. IET Intell. Transp. Syst. 2016, 10, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Bellenger, C.R.; Thomson, R.L.; Howe, P.R.C.; Karavirta, L.; Buckley, J.D. Monitoring athletic training status using the maximal rate of heart rate increase. J. Sci. Med. Sport 2016, 19, 590–595. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.M.; Savkin, A.V.; Celler, B.G.; Su, S.W. Lu Wang Nonlinear Modeling and Control of Human Heart Rate Response During Exercise With Various Work Load Intensities. IEEE Trans. Biomed. Eng. 2008, 55, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Achten, J.; Jeukendrup, A.E. Heart Rate Monitoring: Applications and Limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Dalleck, L.C.; Kravitz, L. Relationship Between %Heart Rate Reserve And %VO2 Reserve During Elliptical Crosstrainer Exercise. J. Sports Sci. Med. 2006, 5, 662–671. [Google Scholar] [PubMed]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Camarda, S.R.D.A.; Tebexreni, A.S.; Páfaro, C.N.; Sasai, F.B.; Tambeiro, V.L.; Juliano, Y.; Barros Neto, T.L.D. Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arq. Bras. Cardiol. 2008, 91, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J.; Vuorimaa, T. Heart rate and exercise intensity during sports activities. Practical application. Sports Med. 1988, 5, 303–311. [Google Scholar] [CrossRef]
- Kawada, T.; Sunagawa, G.; Takaki, H.; Shishido, T.; Miyano, H.; Miyashita, H.; Sato, T.; Sugimachi, M.; Sunagawa, K. Development of a servo-controller of heart rate using a treadmill. Jpn. Circ. J. 1999, 63, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Fagard, R.; Conway, J. Measurement of cardiac output: Fick principle using catheterization. Eur. Heart J. 1990, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Conlee, R.K.; Jensen, R.; Fellingham, G.W.; George, J.D.; Fisher, A.G. Stroke volume does not plateau during graded exercise in elite male distance runners. Med. Sci. Sports Exerc. 2001, 33, 1849–1854. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Senner, V. Evaluating a heart rate regulation system for human–electric hybrid vehicles. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2018, 232, 102–111. [Google Scholar] [CrossRef]
- Pasadyn, S.R.; Soudan, M.; Gillinov, M.; Houghtaling, P.; Phelan, D.; Gillinov, N.; Bittel, B.; Desai, M.Y. Accuracy of commercially available heart rate monitors in athletes: A prospective study. Cardiovasc. Diagn. Ther. 2019, 9, 379–385. [Google Scholar] [CrossRef]
- Arakawa, T. A Review of Heartbeat Detection Systems for Automotive Applications. Sensors 2021, 21, 6112. [Google Scholar] [CrossRef] [PubMed]
- Challoner, A.V.; Ramsay, C.A. A photoelectric plethysmograph for the measurement of cutaneous blood flow. Phys. Med. Biol. 1974, 19, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.A.; Harness, J.B.; Irving, G.; Mearns, A.J. Skin photoplethysmography—A review. Comput. Methods Programs Biomed. 1989, 28, 257–269. [Google Scholar] [CrossRef]
- Hermand, E.; Cassirame, J.; Ennequin, G.; Hue, O. Validation of a Photoplethysmographic Heart Rate Monitor: Polar OH1. Int. J. Sports Med. 2019, 40, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Temko, A. Accurate Heart Rate Monitoring During Physical Exercises Using PPG. IEEE Trans. Biomed. Eng. 2017, 64, 2016–2024. [Google Scholar] [CrossRef] [Green Version]
- Rogers, B.; Giles, D.; Draper, N.; Hoos, O.; Gronwald, T. A New Detection Method Defining the Aerobic Threshold for Endurance Exercise and Training Prescription Based on Fractal Correlation Properties of Heart Rate Variability. Front. Physiol. 2021, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Cottin, F.; Leprêtre, P.-M.; Lopes, P.; Papelier, Y.; Médigue, C.; Billat, V. Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int. J. Sports Med. 2006, 27, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.M.F.; Salvador, P.C.D.N.; Antunes, D.; Possamai, L.T.; Ventura, T.; Guglielmo, L.G.A.; Denadai, B.S.; de Lucas, R.D. Heart rate variability kinetics during different intensity domains of cycling exercise in healthy subjects. Eur. J. Sport Sci. 2021, 1–9. [Google Scholar] [CrossRef]
- Cassirame, J.; Chevrolat, S.; Mourot, L. Effects of R-R time series accuracy on heart rate variability indexes. Mov. Sport Sci.-Sci. Mot. 2019, 106, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Alonso, E.F.; Septemberúlveda-Cano, L.M.; Bailón-Luesma, R.; Laguna, P.; Castellanos-Dominguez, G. Estimating respiratory frequency from HRV during treadmill exercise testing. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 121–124. [Google Scholar]
- Smolander, J.; Juuti, T.; Kinnunen, M.-L.; Laine, K.; Louhevaara, V.; Männikkö, K.; Rusko, H. A new heart rate variability-based method for the estimation of oxygen consumption without individual laboratory calibration: Application example on postal workers. Appl. Erg. 2008, 39, 325–331. [Google Scholar] [CrossRef]
- Rusko, H.; Pulkkinen, A.; Saalasti, S.; Hynynen, E.; Kihu, J. Pre-prediction of epoc: A tool for monitoring fatigue accumulation during exercise? Med. Sci. Sports Exerc.-Med. Sci. Sport Exerc. 2003, 35, S183. [Google Scholar] [CrossRef] [Green Version]
- Miles, M.; Rodrigues, A.; Tajali, S.; Xiong, Y.; Orchanian-Cheff, A.; Reid, W.D.; Rozenberg, D. Muscle and cerebral oxygenation during cycling in chronic obstructive pulmonary disease: A scoping review. Chron Respir. Dis. 2021, 18, 1479973121993494. [Google Scholar] [CrossRef]
- Bowes, W.A.; Corke, B.C.; Hulka, J. Pulse oximetry: A review of the theory, accuracy, and clinical applications. Obs. Gynecol. 1989, 74, 541–546. [Google Scholar]
- Al-Naji, A.; Khalid, G.A.; Mahdi, J.F.; Chahl, J. Non-Contact SpO2 Prediction System Based on a Digital Camera. Appl. Sci. 2021, 11, 4255. [Google Scholar] [CrossRef]
- Schiefer, L.M.; Treff, G.; Treff, F.; Schmidt, P.; Schäfer, L.; Niebauer, J.; Swenson, K.E.; Swenson, E.R.; Berger, M.M.; Sareban, M. Validity of Peripheral Oxygen Saturation Measurements with the Garmin Fēnix® 5X Plus Wearable Device at 4559 m. Sensors 2021, 21, 6363. [Google Scholar] [CrossRef]
- Hermand, E.; Coll, C.; Richalet, J.-P.; Lhuissier, F.J. Accuracy and Reliability of Pulse O2 Saturation Measured by a Wrist-worn Oximeter. Int. J. Sports Med. 2021, 42, 1268–1273. [Google Scholar] [CrossRef]
- Bundy, M.; Leaver, A. Training and conditioning. In A Guide to Sports and Injury Management; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–9. ISBN 978-0-443-06813-3. [Google Scholar]
- Hedge, E.; Au, J.; Hughson, R. Wearable Sensor Technology and Machine Learning for Prediction of Oxygen Uptake and Extraction of Kinetics during Moderate and Heavy Intensity Exercise by Eric Thomas Hedge. Available online: https://www.semanticscholar.org/paper/Wearable-Sensor-Technology-and-Machine-Learning-for-Hedge-Au/979affa63843c3b06d34a6d59de22f3b46133c9e (accessed on 15 November 2021).
- Zignoli, A.; Fornasiero, A.; Ragni, M.; Pellegrini, B.; Schena, F.; Biral, F.; Laursen, P.B. Estimating an individual’s oxygen uptake during cycling exercise with a recurrent neural network trained from easy-to-obtain inputs: A pilot study. PLoS ONE 2020, 15, e0229466. [Google Scholar] [CrossRef] [Green Version]
- Alzamer, H.; Abuhmed, T.; Hamad, K. A Short Review on the Machine Learning-Guided Oxygen Uptake Prediction for Sport Science Applications. Electronics 2021, 10, 1956. [Google Scholar] [CrossRef]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Stöggl, T.; Born, D.-P. Near Infrared Spectroscopy for Muscle Specific Analysis of Intensity and Fatigue during Cross-Country Skiing Competition—A Case Report. Sensors 2021, 21, 2535. [Google Scholar] [CrossRef]
- Born, D.-P.; Stöggl, T.; Swarén, M.; Björklund, G. Near-Infrared Spectroscopy: More Accurate Than Heart Rate for Monitoring Intensity in Running in Hilly Terrain. Int. J. Sports Physiol. Perform. 2017, 12, 440–447. [Google Scholar] [CrossRef]
- Jaafar, H.; Attiogbé, E.; Rouis, M.; Vandewalle, H.; Driss, T. Reliability of Force-Velocity Tests in Cycling and Cranking Exercises in Men and Women. BioMed. Res. Int. 2015, 2015, e954780. [Google Scholar] [CrossRef] [Green Version]
- Dorel, S.; Couturier, A.; Lacour, J.-R.; Vandewalle, H.; Hautier, C.; Hug, F. Force-velocity relationship in cycling revisited: Benefit of two-dimensional pedal forces analysis. Med. Sci. Sports Exerc. 2010, 42, 1174–1183. [Google Scholar] [CrossRef]
- Vercruyssen, F.; Brisswalter, J. Which factors determine the freely chosen cadence during submaximal cycling? J. Sci. Med. Sport 2010, 13, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Abbiss, C.; Peiffer, J.; Laursen, P. Optimal cadence selection during cycling. ECU Publ. 2009, 10, 1–15. [Google Scholar]
- Suzuki, K.; Omiya, K.; Yamada, S.; Kobayashi, T.; Suzuki, N.; Osada, N.; Miyake, F. Relations between strength and endurance of leg skeletal muscle and cardiopulmonary exercise testing parameters in patients with chronic heart failure. J. Cardiol. 2004, 43, 59–68. [Google Scholar]
- Farooqi, M.A.M.; Killian, K.; Satia, I. The impact of muscle strength on exercise capacity and symptoms. ERJ Open Res. 2020, 6, 00089–02020. [Google Scholar] [CrossRef]
- McLeod, W.D.; Blackburn, T.A. Biomechanics of knee rehabilitation with cycling. Am. J. Sports Med. 1980, 8, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Johnston, T.E. Biomechanical Considerations for Cycling Interventions in Rehabilitation. Phys. Ther. 2007, 87, 1243–1252. [Google Scholar] [CrossRef] [Green Version]
- Olivier, N.; Weissland, T.; Legrand, R.; Berthoin, S.; Rogez, J.; Thevenon, A.; Prieur, F. The effect of a one-leg cycling aerobic training program during the rehabilitation period in soccer players with anterior cruciate ligament reconstruction. Clin. J. Sport Med. 2010, 20, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Kisner, C.; Colby, L.A. Therapeutic Exercise: Foundations and Techniques, 6th ed.; F.A. Davis: Philadelphia, PA, USA, 2012; ISBN 978-0-8036-2574-7. [Google Scholar]
- Perry, J.; Bekey, G.A. EMG-force relationships in skeletal muscle. Crit. Rev. Biomed. Eng. 1981, 7, 1–22. [Google Scholar]
- Bengs, D.; Jeglinsky, I.; Surakka, J.; Hellsten, T.; Ring, J.; Kettunen, J. Reliability of Measuring Lower-Limb-Muscle Electromyography Activity Ratio in Activities of Daily Living With Electrodes Embedded in the Clothing. J. Sport Rehabil. 2017, 26, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colyer, S.L.; McGuigan, P.M. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements. J. Sports Sci. Med. 2018, 17, 101–109. [Google Scholar] [PubMed]
- Hernández, M.A.; Ramírez, O.; Benavides, J.A.; Franco, J.F. Urban cycling and air quality: Characterizing cyclist exposure to particulate-related pollution. Urban Clim. 2021, 36, 100767. [Google Scholar] [CrossRef]
- Carreras, H.; Ehrnsperger, L.; Klemm, O.; Paas, B. Cyclists’ exposure to air pollution: In situ evaluation with a cargo bike platform. Environ. Monit. Assess. 2020, 192, 470. [Google Scholar] [CrossRef]
- Farrell, W. Investigating the Effects of the Urban Environment on Cyclist Exposure to Near-Roadway Air Pollution. Master’ Thesis, McGill University, Montreal, QC, Canada, 2014. [Google Scholar]
- Berghmans, P.; Bleux, N.; Panis, L.I.; Mishra, V.K.; Torfs, R.; Van Poppel, M. Exposure assessment of a cyclist to PM10 and ultrafine particles. Sci. Total Environ. 2009, 407, 1286–1298. [Google Scholar] [CrossRef]
- Int Panis, L.; de Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; Mishra, V.; Thomas, I.; Meeusen, R. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmos. Environ. 2010, 44, 2263–2270. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Ottomanelli, M. A real time multi-objective cyclists route choice model for a bike-sharing mobile application. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 645–650. [Google Scholar]
- Elen, B.; Peters, J.; Poppel, M.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. The Aeroflex: A Bicycle for Mobile Air Quality Measurements. Sensors 2012, 13, 221–240. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Jiang, A.; Qi, S.; Xiang, C.; Xu, N. A bicycle-borne sensor for monitoring air pollution near roadways. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 June 2015; pp. 166–167. [Google Scholar]
- Aguiari, D.; Delnevo, G.; Monti, L.; Ghini, V.; Mirri, S.; Salomoni, P.; Pau, G.; Im, M.; Tse, R.; Ekpanyapong, M.; et al. Canarin II: Designing a smart e-bike eco-system. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–6. [Google Scholar]
- Shen, S.; Lv, C.; Xu, X.; Liu, X. A Bicycle-Borne Sensor Node for Monitoring Air Pollution Based on NB-IoT. In Machine Learning and Intelligent Communications; Zhai, X.B., Chen, B., Zhu, K., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2019; Volume 294, pp. 325–332. ISBN 978-3-030-32387-5. [Google Scholar]
- Hossain, E.; Khan, A.; Moni, M.A.; Uddin, S. Use of Electronic Health Data for Disease Prediction: A Comprehensive Literature Review. IEEE/ACM Trans. Comput. Biol. Bioinf. 2021, 18, 745–758. [Google Scholar] [CrossRef]
- Morgenstern, J.D.; Buajitti, E.; O’Neill, M.; Piggott, T.; Goel, V.; Fridman, D.; Kornas, K.; Rosella, L.C. Predicting population health with machine learning: A scoping review. BMJ Open 2020, 10, e037860. [Google Scholar] [CrossRef]
- Bini, R.R.; Hume, P.A.; Croft, J.; Kilding, A. Optimizing Bicycle Configuration and Cyclists’ Body Position to Prevent Overuse Injury Using Biomechanical Approaches. In Biomechanics of Cycling; Bini, R.R., Carpes, F.P., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 71–83. ISBN 978-3-319-05538-1. [Google Scholar]
- Bini, R.; Hume, P.A.; Croft, J.L. Effects of Bicycle Saddle Height on Knee Injury Risk and Cycling Performance. Sports Med. 2011, 41, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Swart, J.; Holliday, W. Cycling Biomechanics Optimization—The (R) Evolution of Bicycle Fitting. Curr. Sports Med. Rep. 2019, 18, 490–496. [Google Scholar] [CrossRef]
- Holmes, J.C.; Pruitt, A.L.; Whalen, N.J. Lower extremity overuse in bicycling. Clin. Sports Med. 1994, 13, 187–205. [Google Scholar] [CrossRef]
- Maio, A.; Afonso, J. Wireless Cycling Posture Monitoring Based on Smartphones and Bluetooth Low Energy. In World Congress on Engineering; World Congress on Engineering, WCE 2015; IAENG: Hong Kong, Chnia, 2015; ISBN 978-988-19253-4-3. [Google Scholar]
- Korff, T.; Romer, L.M.; Mayhew, I.; Martin, J.C. Effect of Pedaling Technique on Mechanical Effectiveness and Efficiency in Cyclists. Med. Sci. Sports Exerc. 2007, 39, 991–995. [Google Scholar] [CrossRef] [Green Version]
- Lucchetti, A.; Corno, M.; Savaresi, S.M. Cyclist’s Riding Style Assessment via Inertial Measurement. IFAC-PapersOnLine 2017, 50, 994–999. [Google Scholar] [CrossRef]
- Ruegsegger, G.N.; Booth, F.W. Health Benefits of Exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029694. [Google Scholar] [CrossRef] [Green Version]
Sensors | Oxygen Saturation | Heart Rate | Power/Force/Torque | Cadence | Speed | Gyroscope | Accelero-Meter | GPS | Weather | |
---|---|---|---|---|---|---|---|---|---|---|
Articles | ||||||||||
A Wearable Capacitive Heart-Rate Monitor for Controlling Elec-trically Assisted Bicycle (2009) [47] | No | Yes | No | No | No | No | No | No | No | |
Mobile Health Monitoring Systems (2009) [48] | Yes | Yes | No | No | Yes | No | Yes | No | Tempera-ture | |
A wearable ECG-HR detector and its application to automatic assist-mode selection of an electrically as-sisted bicycle (2011) [49] | No | Yes | No | No | No | No | No | No | No | |
The design and implementation of the E-BIKE physiological monitoring pro-totype system for cyclists [50] | No | Yes | No | No | No | No | No | Yes | Tempera-ture | |
Electric Motor Assisted Bicycle as an Aerobic Ex-ercise Machine (2012) [51] | Yes (VO2) | Yes | No | Yes | No | No | No | No | No | |
Feasibility Study on a Perceived Fatigue Prediction Dependent Power Control for an Electrically Assisted Bicycle (2013) [52]*Inferred from each stroke using the electromyo-gram | No | Yes | *Yes | *Yes | *Yes | No | No | No | No | |
A Personalized and Context-Aware Mobile Assistance Sys-tem for Cardio-vascular Preven-tion and Rehabili-tation (2014) [53] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No | |
Optimization of Electric Bicycle for Youths with Disabilities (2014) [54] | Yes | Yes | Yes | Yes | Yes | No | No | No | No | |
Automatic Con-trol of Cycling Ef-fort Using Elec-tric Bicycles and Mobile Devices (2015) [55] | No | No | Yes | Yes | No | No | No | No | Yes | |
Human-in-the-Loop Bicycle Control via Ac-tive Heart Rate Regulation (2015) [56] | No | Yes | Yes | Yes | No | No | No | No | No | |
Design, Control, and Validation of aCharge-Sustain-ing Parallel Hy-brid Bicycle (2016) [57] | No | Yes | Yes | Yes | No | No | No | No | No | |
Health Analysis ofBicycle Rider andSecurity of Bicy-cle Using IoT (2017) [58] | No | Yes | No | No | Yes | No | Yes | No | No | |
Multi-Sensor InformationFusion for Opti-mizing Electric Bicycle Routes Using a Swarm Intelligence Algo-rithm (2017) [59] | No | Yes | No | Yes | Yes | No | No | Yes | No | |
Smart-Bike as One of the Ways to Ensure Sustainable Mobility in Smart Cities (2017) [60] | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | |
An Intelligent Control System for an Electrically Power Assisted Cycle (EPAC) (2018) [61] | No | Yes | No | Yes | Yes | No | Yes | No | No | |
Cyclist Monitoring System Using NI myRIO-1900 (2018) [62] | No | Yes | No | No | Yes | No | Yes | Yes | No | |
Development of Intelligent Smart Bicycle Control System (2018) [63] | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | |
HEALTHeBIKES–Smart E-Bike Prototype for Controlled Exercise in Tele rehabilitation Programs (2018) [64] | No | Yes | Yes | Yes | Yes | No | No | No | No | |
Increasing the Intensity over Time of an Electric-Assist Bike Basedon the User and Route: The Bike Becomes the Gym (2018) [65] | No | Yes | No | Yes | Yes | No | No | Yes | No | |
A context-aware e-bike system to reduce pollution inhalation while cycling (2019) [66] | Yes | Yes | Yes | No | Yes | No | No | No | Yes (air quality) | |
Design of sensor system for air pollution and human vital monitoring for connected cyclists (2019) [67] | No | Yes | No | No | No | No | Yes | No | No | |
Regulating the Heart Rate of Human–Electric Hybrid Vehicle Riders Under Energy ConsumptionConstraints Using an Optimal Control Approach (2019) [68] | No | Yes | Yes | Yes | No | No | No | No | No | |
Use of a smart electrically assisted bicycle (VELIS) in the health field Proof of concept (2020) [69] | No | Yes | Yes | Yes | Yes | No | No | Yes | No |
Architectures | PC | Server | Micro-Controller | Smartphone | |
---|---|---|---|---|---|
Articles | |||||
A Wearable Capacitive Heart-Rate Monitor for Controlling Electrically Assisted Bicycle(2009) [47] | No | No | Yes | No | |
Mobile Health Monitoring Systems (2009) [48] | Yes | Yes | Yes | No | |
A wearable ECG-HR detector and its application to automatic assist-mode selection of an electrically assisted bicycle (2011) [49] | Yes | No | No | No | |
The design and implementation of the E-BIKE physiological monitoring prototype system for cyclists (2011) [50] | No | No | Yes | No | |
Electric Motor Assisted Bicycle as an Aerobic Exercise Machine (2012) [51] | No | No | Yes | No | |
A Personalized and Context-Aware Mobile Assistance System for Cardiovascular Prevention and Rehabilitation (2014) [53] | Yes | Yes | Yes | Yes | |
Optimization of Electric Bicycle for Youths with Disabilities (2014) [54] | Yes | No | Yes | No | |
Automatic Control of Cycling Effort Using Electric Bicycles and Mobile Devices (2015) [55] | No | No | Yes | Yes | |
Human-in-the-Loop Bicycle Control via Active Heart Rate Regulation (2015) [56] | No | No | Yes | No | |
Design, Control, and Validation of aCharge-Sustaining Parallel Hybrid Bicycle (2016) [57] | No | No | Yes | Yes | |
Health Analysis ofBicycle Rider andSecurity of Bicycle Using IoT (2017) [58] | No | No | Yes | Yes | |
Multi-Sensor InformationFusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm (2017) [59] | No | Yes | Yes | Yes | |
Smart-Bike as One of the Ways to Ensure Sustainable Mobility in Smart Cities (2017) [60] | No | Yes | Yes | No | |
An Intelligent Control System for an Electrically Power Assisted Cycle (EPAC) (2018) [61] | No | No | Yes | No | |
Cyclist Monitoring System Using NI myRIO-1900 (2018) [62] | Yes | No | Yes | No | |
Development of Intelligent Smart Bicycle Control System (2018) [63] | No | No | Yes | Yes | |
HEALTHeBIKES–Smart E-Bike Prototype for Controlled Exercise in Tele rehabilitation Programs (2018) [64] | No | Yes | Yes | Yes | |
Increasing the Intensity over Time of an Electric-Assist Bike Basedon the User and Route: The Bike Becomes the Gym (2018) [65] | No | Yes | Yes | Yes | |
A context-aware e-bike system to reduce pollution inhalation while cycling (2019) [66] | No | No | Yes | Yes | |
Design of sensor system for air pollution and human vital monitoring for connected cyclists(2019) [67] | No | No | Yes | Yes | |
Regulating the Heart Rate of Human–Electric Hybrid Vehicle Riders Under Energy ConsumptionConstraints Using an Optimal Control Approach (2019) [68] | No | No | Yes | No |
Characteristics | Subjects (Sex) | Mean Age | Mean Weigh | Mean Height | Activity | Condition | Duration | |
---|---|---|---|---|---|---|---|---|
Articles | ||||||||
A Wearable Capacitive Heart-Rate Monitor for Controlling Electrically Assisted Bicycle (2009) [47] | 4 (N/S) | 21.8 | 60.3 | 170 | 1.14 Km on flat road and 365 m of 4% slope | 2 min rest prior to the activity. Constant speed of 10 Km/h | ||
A wearable ECG-HR detector and its application to automatic assist mode selection of an electrically assisted bicycle (2011) [49] | 1 (M) | 22 | 4 loops–224 m flat and 106 m slope–3 sets: one without and with assistance, and the proposed control | Constant speed of 12 Km/h | ||||
Electric Motor Assisted Bicycle as an Aerobic Exercise Machine (2012) [51] | 5 (N/S) | 4.6 Km mixed road–3 sets: assistance control at 65 RPM, 70 RPM and regular assistance | ||||||
Feasibility Study on aPerceived Fatigue Prediction Dependent Power Control for an Electrically Assisted Bicycle (2013) [52] | 17 (12M, 5F) | 8M (23.8 ± 2.3) 4M (61.3 ± 8.1) 5F (44.2 ± 6.3) | 2.1 Km with 600 m of uphill–20 min rest intervals | Constant cadence of 60 RPM | ||||
Optimization of Electric Bicycle for Youths with Disabilities (2014) [54] | 1 (N/S) | 2 sets: with assistance and without (on a home trainer) | ||||||
Automatic Control of Cycling Effort Using Electric Bicycles and Mobile Devices (2015) [55] | 1 (N/S) | Home trainer resistance minimum value for 30 s. From 30 to 50 s resistance increased to maximum for 70 s. After resistance was gradually decreased–2 sets: with assistance and without | Constant cadence | |||||
Human-in-the-Loop Bicycle Control via Active Heart Rate Regulation (2015) [56] | 2(N/S) | 2 sets: Traditional mode and HR control mode | ||||||
Design, Control, and Validation of a Charge-Sustaining Parallel Hybrid Bicycle (2016) [57] | ||||||||
First study | 1 (N/S) | 1.1 Km with an average speed of 20 Km/h–2 sets: without assistance and with the algorithm | ||||||
Second study | 2 (N/S) | 20 min of route with ± 5% slopes–2 sets: without assistance and with the algorithm | ||||||
Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm (2017) [59] | 187 (N/S) | Between 17 and 58 | 3.82 Km route (home to work) | 11 Months | ||||
Cyclist Monitoring System Using NI myRIO 1900 (2018) [62] | 1 (N/S) | Standard procedure | ||||||
HEALTH eBIKES–Smart E-Bike Prototype for Controlled Exercise in Tele rehabilitation Programs (2018) [64] | 2 (N/S) | 7 Rides on different terrains | ||||||
Increasing the Intensity over Time of an Electric Assist Bike Based on the User and Route: The Bike Becomes the Gym (2018) [65] | 9 (6M, 3F) | 30.9 ± 4.7 | 4 Months | |||||
A context-aware e-bike system to reduce pollution inhalation while cycling (2019) [66] | 1 (N/S) | 5 Km mostly flat route–2 laps | Constant speed of 20 Km/h | |||||
Regulating the Heart Rate of Human–Electric Hybrid Vehicle Riders Under Energy Consumption Constraints Using an Optimal Control Approach (2019) [68] | Validation through simulation | |||||||
Use of a smart electrically assisted bicycle (VELIS) in the health field Proof of concept (2020) [69] | 12 (7M, 5F) | Between 29 and 66 | 14 Km with 350 positive elevation (6 Km flat, 2.5 Km uphill and 5.5 Km downhill)–4 sessions | Constant cadence of 55, 65 and 75 RPM depending on the day | One week |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avina-Bravo, E.G.; Cassirame, J.; Escriba, C.; Acco, P.; Fourniols, J.-Y.; Soto-Romero, G. Smart Electrically Assisted Bicycles as Health Monitoring Systems: A Review. Sensors 2022, 22, 468. https://doi.org/10.3390/s22020468
Avina-Bravo EG, Cassirame J, Escriba C, Acco P, Fourniols J-Y, Soto-Romero G. Smart Electrically Assisted Bicycles as Health Monitoring Systems: A Review. Sensors. 2022; 22(2):468. https://doi.org/10.3390/s22020468
Chicago/Turabian StyleAvina-Bravo, Eli Gabriel, Johan Cassirame, Christophe Escriba, Pascal Acco, Jean-Yves Fourniols, and Georges Soto-Romero. 2022. "Smart Electrically Assisted Bicycles as Health Monitoring Systems: A Review" Sensors 22, no. 2: 468. https://doi.org/10.3390/s22020468