Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester
Abstract
:1. Introduction
2. MMU RF Spectral Survey in Malaysia
3. Design Facets of the Suitable Antennas Geometry for RFEH System
4. Broadband Performance of LP Antenna
5. State-of-the-Art: Multiband Rectifier Architecture for RF Harvester Technology
5.1. Multiband Rectifier Topology
5.2. Elementary Discussion about Rectifier Circuit
5.3. Proposed Rectifier Topology
5.4. RF Filter Design Including Matching Element
6. RF Simulation Setup and Performance Analysis
7. Real Phase Measurements in RF Harvester
7.1. Employing Known Frequency Signals and RF Power Source
7.2. Using a Random and Unpredictable (i.e., Ambient) Energy Source
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M. A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting. IEEE Trans. Antennas Propag. 2016, 64, 3160–3171. [Google Scholar] [CrossRef] [Green Version]
- Brown, W. The History of Power Transmission by Radio Waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242. [Google Scholar] [CrossRef] [Green Version]
- Afrough, M.; Fakharian, M.M.; Tavakol-Hamedani, F. Compact Dual-Band Suspended Microstrip Slot Antenna with an An-tipodal Parasitic Element for WLAN Applications. Wirel. Pers. Commun. 2015, 83, 571–579. [Google Scholar] [CrossRef]
- Niotaki, K.; Kim, S.; Jeong, S.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1634–1637. [Google Scholar] [CrossRef]
- Scheeler, R.; Korhummel, S.; Popovic, Z. A Dual Frequency Ultralow-Power Efficient 0.5-g Rectenna. IEEE Microw. Mag. 2014, 15, 109–114. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Y.-X.; He, M.; Zhong, Z. A dual-band rectenna using broadband Yagi antenna array for ambient RF power har-vesting. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 918–921. [Google Scholar] [CrossRef]
- Visser, H.J.; Vullers, R.J.M. RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements. Proc. IEEE 2013, 101, 1410–1423. [Google Scholar] [CrossRef]
- Colomer-Farrarons, J.; Miribel-Catala, P.; Saiz-Vela, A.; Samitier, J. A multi harvested self-powered system in a low-voltage low-power technology. IEEE Trans. Ind. Electron. 2011, 58, 4250–4263. [Google Scholar] [CrossRef]
- Huang, Y.; Shinohara, N.; Mitani, T. A Constant Efficiency of Rectifying Circuit in an Extremely Wide Load Range. IEEE Trans. Microw. Theory Tech. 2013, 62, 986–993. [Google Scholar] [CrossRef]
- Lu, P.; Yang, X.-S.; Li, J.-L.; Wang, B.-Z. A Compact Frequency Reconfigurable Rectenna for 5.2- and 5.8-GHz Wireless Power Transmission. IEEE Trans. Power Electron. 2014, 30, 6006–6010. [Google Scholar] [CrossRef]
- Mcspadden, J.; Fan, L.; Chang, K. Design and experiments of a high conversion efficiency 5.8-GHz rectenna. IEEE Trans. Microw. Theory Tech. 1998, 46, 2053–2060. [Google Scholar] [CrossRef]
- Kuhn, V.; Lahuec, C.; Seguin, F.; Person, C. A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Up to 84%. IEEE Trans. Microw. Theory Tech. 2015, 63, 1768–1778. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Zhou, J.; Zhang, J.; Yuan, S.; Carter, P. A High Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting. IEEE Trans. Antennas Propag. 2015, 63, 3486–3495. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.J.; Chang, K. 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microw. Theory Tech. 2006, 54, 1495–1502. [Google Scholar]
- Strassner, B.; Chang, K. 5.8-GHz circularly polarized dual rhombic-loop travelling-wave rectifying antenna for low power-density wireless power transmission applications. IEEE Trans. Microw. Theory Tech. 2003, 51, 1548–1553. [Google Scholar] [CrossRef]
- Masotti, D.; Costanzo, A.; Prete, M.D.; Rizzoli, V. Genetic-based design of a tetra-band high-efficiency radio-frequency energy system. Microw. Antennas Propag. 2013, 7, 1254–1263. [Google Scholar] [CrossRef]
- Hagerty, J.A.; Helmbrecht, F.B.; McCalpin, W.H.; Zane, R.; Popovic, Z.B. Recycling Ambient Microwave Energy with Broad-Band Rectenna Arrays. IEEE Trans. Microw. Theory Tech. 2004, 52, 1014–1024. [Google Scholar] [CrossRef]
- Roy, S.; Samad, M.A.; Podder, S. Effect of complementary triangular split ring resonator on microstrip patch antenna. In Proceedings of the 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), Khulna, Bangladesh, 10–12 December 2015; pp. 353–358. [Google Scholar]
- Sammeta, R.; Filipovic, D.S. Quasi Frequency-Independent Increased Bandwidth Planar Log-Periodic Antenna. IEEE Trans. Antennas Propag. 2014, 62, 1937–1944. [Google Scholar] [CrossRef]
- Tentzeris, M.M.; Kawahara, Y. Novel Energy Harvesting Technologies for ICT Applications. In Proceedings of the 2008 International Symposium on Applications and the Internet, Turku, Finland, 28 July–1 August 2008; pp. 373–376. [Google Scholar]
- Week 8 Google Maps. Available online: https://mmls.mmu.edu.my/wordpress/1131120477/2015/08/25/week-8-google-maps/ (accessed on 30 November 2021).
- Log-Periodic Tooth Antennas. Available online: http://www.antenna-theory.com/antennas/wideband/log-periodic.php (accessed on 15 December 2021).
- Sogorb, T.; Llario, J.V.; Pelegri, J.; Lajara, R.; Alberola, J. Studying the feasibility of energy harvesting from broadcast RF station for WSN. In Proceedings of the 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008. [Google Scholar]
- Roy, S.; Mondal, H.S.; Mollah, M.N. Design and Validification of Trilateral Censored Resonator Structure with Patch Antenna Intended for WLAN Purposes. Int. J. Sens. Wirel. Commun. Control 2020, 10, 812–826. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, B.; Chen, X.; Huang, K.-M.; Liu, C.-J. Study on an S-band Rectenna Array for Wireless Microwave Power Transmission. Prog. Electromagn. Res. 2013, 135, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Olgun, U.; Volakis, J.; Chen, C.-C. Design of an efficient ambient WiFi energy harvesting system. IET Microw. Antennas Propag. 2012, 6, 1200–1206. [Google Scholar] [CrossRef]
- Pavone, D.; Buonanno, A.; Urso, M.D.; Corte, G.F.D. Design considerations for radio frequency energy harvesting devices. Progr. Electromagn. Res. 2012, 45, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Nimo, A.; Grgic, D.; Reindl, L.M. Impedance optimization of wireless electromagnetic energy harvester for maximum out-put efficiency at W input power. In Active and Passive Smart Structures and Integrated Systems 2012; International Society for Optics and Photonics: San Diego, CA, USA, 2012; Volume 8341, p. 83410W. [Google Scholar]
- Collado, A.; Georgiadis, A. Conformal Hybrid Solar and Electromagnetic (EM) Energy Harvesting Rectenna. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 2225–2234. [Google Scholar] [CrossRef]
- Pinuela, M.; Mitcheson, P.D.; Lucyszyn, S. Ambient RF Energy Harvesting in Urban and Semi-Urban Environments. IEEE Trans. Microw. Theory Tech. 2013, 61, 2715–2726. [Google Scholar] [CrossRef]
- Keyrouz, S.; Visser, H.J.; Tijhuis, A.G. Multiband simultaneous radio frequency energy harvesting. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 3058–3061. [Google Scholar]
- Suh, Y.; Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Tech. 2002, 50, 1784–1789. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, V.; Seguin, F.; Lahuec, C.; Person, C. A multi-tone RF energy harvester in body sensor area network context. In Proceedings of the 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 11–12 November 2013; pp. 238–241. [Google Scholar]
- Mikeka, C.; Arai, H.; Georgiadis, A.; Collado, A. DTV band micropower RF energy-harvesting circuit architecture and per-formance analysis. In Proceedings of the 2011 IEEE International Conference on RFID-Technologies and Applications, Sitges, Spain, 15–16 September 2011; pp. 561–567. [Google Scholar]
- Shinohara, N.; Matsumoto, H. Experimental study of large rectenna array for microwave energy transmission. IEEE Trans. Microw. Theory Tech. 1998, 46, 261–268. [Google Scholar] [CrossRef]
- Miura, T.; Shinohara, N.; Matsumoto, H. Experimental study of rectenna connection for microwave power transmission. Electron. Commun. Jpn. 2001, 84, 27–36. [Google Scholar] [CrossRef]
- Thompson, M.; Fidler, J. Determination of the Impedance Matching Domain of Impedance Matching Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 2098–2106. [Google Scholar] [CrossRef]
- Kanaya, H.; Tsukamaoto, S.; Hirabaru, T.; Kanemoto, D.; Pokharel, R.; Yoshida, K. Energy Harvesting Circuit on a One-Sided Directional Flexible Antenna. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 164–166. [Google Scholar] [CrossRef]
- Adami, S.-E.; Proynov, P.; Hilton, G.S.; Yang, G.; Zhang, C.; Zhu, D.; Li, Y.; Beeby, S.P.; Craddock, I.J.; Stark, B.H. A Flexible 2.45-GHz Power Harvesting Wristband with Net System Output From −24.3 dBm of RF Power. IEEE Trans. Microw. Theory Tech. 2018, 66, 380–395. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.-C.; Yang, C.-R. An Autocalibrated All-Digital Temperature Sensor for On-Chip Thermal Monitoring. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 105–109. [Google Scholar] [CrossRef]
- Hempstead, M.; Lyons, M.J.; Brooks, D.; Wei, G.-Y. Survey of Hardware Systems for Wireless Sensor Networks. J. Low Power Electron. 2008, 4, 11–20. [Google Scholar] [CrossRef]
- Assimonis, S.D.; Daskalakis, S.-N.; Bletsas, A. Sensitive and Efficient RF Harvesting Supply for Batteryless Backscatter Sensor Networks. IEEE Trans. Microw. Theory Tech. 2016, 64, 1327–1338. [Google Scholar] [CrossRef] [Green Version]
- Van Rethy, J.; Danneels, H.; De Smedt, V.; Dehaene, W.; Gielen, G. A low-power and low-voltage BBPLL-based sensor interface in 130 nm CMOS for wireless sensor net-works. In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 18–22 March 2013; pp. 1431–1435. [Google Scholar]
- Mattsson, M.; Kolitsidas, C.I.; Jonsson, B.L.G. Dual-band dual-polarized full-wave rectenna based on differential field sampling. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 956–959. [Google Scholar] [CrossRef]
- Pham, B.L.; Pham, A.-V. Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar]
- Li, L.; Block, S.T.; Duarte, D.E.; Changzhi, L. A 0.45-V MOSFETs-based temperature sensor front-end in 90 nm CMOS with a noncalibrated 3.5 C3 relative inaccuracy from 5.5 C to 105 C. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 771–775. [Google Scholar]
- Chen, S.-W.; Chang, M.-H.; Hsieh, W.-C.; Hwang, W. Fully on-chip temperature, process, and voltage sensors. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 897–900. [Google Scholar]
- Zeng, M.; Li, Z.; Andrenko, A.S.; Zeng, Y.; Tan, H.-Z. A Compact Dual-Band Rectenna for GSM900 and GSM1800 Energy Harvesting. Int. J. Antennas Propag. 2018, 2018, 4781465. [Google Scholar] [CrossRef] [Green Version]
Brand Name | Frq. Range (GHz) | Max. Power (dBm) |
---|---|---|
GSM 900 (UpLink) | 0.88–0.915 | −27.6 |
GSM 900 (DownLink) | 0.925–0.960 | −22.5 |
GSM 1800 (UpLink) | 1.71–1.785 | −31.5 |
GSM 1800 (DownLink) | 1.805–1.880 | −17.8 |
3G (UplinkL) | 1.920–1.980 | −27 |
3G (DownLink) | 2.110–2.230 | −23 |
Wi-Fi | 2.39–2.40 | −25.6 |
LTE | 2.50–2.70 | −26.5 |
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
160 | 69.72 | ||
160 | 49.82 | ||
20 | 47.79 | ||
10 | 37.85 | ||
10 | 11.87 | ||
5 | 19.86 | ||
8 | 37.92 | ||
3 | 27.89 | ||
3 | 19.93 | ||
1.5 | 14.91 | ||
2.5 | 3.84 | ||
1 | 3.05 m | ||
0.8 | Gap | 0.5 | |
69.76 | 45° | ||
70 | 20.4° |
Parameter Symbol | Filter Section 1 i = 1 | Filter Section 2 i = 2 | Filter Section 3 i = 3 | Filter Section 4 i = 4 |
---|---|---|---|---|
Li1 | 22 nH | 1.5 nH | 3.3 nH | 3.9 nH |
Li2 | 27 nH | 5.5 nH | 1.2 nH | 150 nH |
Li3 | 27 nH | 8.2 nH | 1.5 nH | 1 nH |
Li4 | 1 nH | 2.4 nH | 6.2 nH | 3 nH |
Ci1 | 1.8 pF | 0.2 pF | 3.6 pF | 0.3 pF |
Ci2 | 33 pF | 8.2 pF | 220 pF | 8.2 pF |
Ci3 | 680 pF | 2.4 pF | 0.6 pF | 220 pF |
Wi1 | 2.5625 mm | 0.3125 mm | 0.9375 mm | 0.875 mm |
Lstubi1 | 2.47 mm | 0.3 mm | 1.4775 mm | 3.565 mm |
βi1 | 84.7° | 20° | 38° | 56.6° |
Ref. No | [40] | [41] | [42] | [43] | [44] | [45] | [46] | [47] | [48] |
---|---|---|---|---|---|---|---|---|---|
Load (kΩ) | 3 | 7 | 9 | 9.53 | 11 | 12 | 12 | 14 | 24.3 |
DC (V) | 0.41 | 1 | 0.32 | 0.65 | 0.8 | 0.49 | 0.24 | 0.45 | 0.3 |
Ref. No. | Number of Bands | Frequency Bands (GHz) | Dimension (mm) | RF Input Power Level (dBm) | Maximum DC Rectification Efficiency (%) @ dBm | Max. Conversion Efficiency (%) | DC Voltage (V) | Load (kΩ) |
---|---|---|---|---|---|---|---|---|
[6] | Dual-band | 1.8, 2.2 | 300 × 380 × 1.6 | −5 to −30 | 55 @ −30 | 55 | N/A | 5 |
[5] | Dual-band | 0.915, 2.4 | 61.5 × 48 × 0.025 | −11.6 to −13.7 | 56.2 @ −11 | 56.2 | N/A | 2.2 |
[13] | Dual-band | 1.8, 2.1 | 70 × 70 × 13.2 | −10 to −30 | 55 @ −10 | 70 | 0.298 | 15 |
[16] | Quad-band | 0.9, 1.75, 2.15, 2.45 | 155 × 155 × 7.2 | −15 to 0 | 60 @ 0 | 60 | 2.500 | N/A |
[12] | Quad-band | 0.9, 1.8, 2.1, 2.4 | 100 × 100 × 1.6 | −25 to 0 | 65@ 0 | 84 | 0.409 | 11 |
[30] | Quad-band | 0.55, 0.9, 1.85, 2.15 | N/A | −10 to −29 | 40 @ −12 | 40 | N/A | N/A |
[1] | Hexa-band | 0.55, 0.75, 0.9, 1.85, 2.15, 2.45 | 160 × 160 × 1.6 | −5 to −30 | 67 @ −5 | 80 | 0.663 | 10~75 |
New | Quad band | 0.9, 1.8, 2.12, 2.4 | 160 × 160 × 1.6 | −10 to −35 | 52 @ −20 | 52 | 0.687 | 6.18~7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, S.; Tiang, J.-J.; Roslee, M.B.; Ahmed, M.T.; Kouzani, A.Z.; Mahmud, M.A.P. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester. Sensors 2022, 22, 424. https://doi.org/10.3390/s22020424
Roy S, Tiang J-J, Roslee MB, Ahmed MT, Kouzani AZ, Mahmud MAP. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester. Sensors. 2022; 22(2):424. https://doi.org/10.3390/s22020424
Chicago/Turabian StyleRoy, Sunanda, Jun-Jiat Tiang, Mardeni Bin Roslee, Md. Tanvir Ahmed, Abbas Z. Kouzani, and M. A. Parvez Mahmud. 2022. "Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester" Sensors 22, no. 2: 424. https://doi.org/10.3390/s22020424
APA StyleRoy, S., Tiang, J.-J., Roslee, M. B., Ahmed, M. T., Kouzani, A. Z., & Mahmud, M. A. P. (2022). Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester. Sensors, 22(2), 424. https://doi.org/10.3390/s22020424