Linear Characteristics of the Differences in Phase Tangents of Triple-Coil Electromagnetic Sensors and Their Application in Nonmagnetic Metal Classification
Abstract
:1. Introduction
2. Sensor Configuration
3. Theoretical Derivation
3.1. Derivation of the Classification Feature
3.2. Effect of Lift-Off Height on the Feature
4. Experiments and Discussions
4.1. Experimental Setup
4.2. Experimental Results and Analysis
4.3. Classification Method and Accuracy Verification
- (1)
- Obtain the impedance change using the triple-coil sensor, and acquire the feature of the difference in the phase tangent of the impedance change after data processing.
- (2)
- Use auxiliary means to measure the lift-off height between the sensor and the sample when measuring the impedance change.
- (3)
- Mark the data point with the lift-off height as the horizontal coordinate and the feature as the vertical coordinate on the feature lift-off plot shown in Figure 7.
- (4)
- Find the line closest to that data point.
- (5)
- Obtain the metal type based on that line.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soo, V.K.; Doolan, M.; Compston, P.; Duflou, J.R.; Peeters, J.; Umeda, Y. The influence of end-of-life regulation on vehicle material circularity: A comparison of Europe, Japan, Australia and the US. Resour. Conserv. Recycl. 2021, 168, 105294. [Google Scholar] [CrossRef]
- Soo, V.K.; Peeters, J.; Compston, P.; Doolan, M.; Duflou, J. Comparative Study of End-of-Life Vehicle Recycling in Australia and Belgium. Procedia CIRP 2017, 61, 269–274. [Google Scholar] [CrossRef]
- Santini, A.; Morselli, L.; Passarini, F.; Vassura, I.; Di Carlo, S.; Bonino, F. End-of-Life Vehicles management: Italian material and energy recovery efficiency. Waste Manag. 2011, 31, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, X. Pulsed Eddy Current-Based Method for Electromagnetic Parameters of Ferromagnetic Materials. IEEE Sensors J. 2020, 21, 6376–6383. [Google Scholar] [CrossRef]
- Chen, X.; Lei, Y. Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method. NDT E Int. 2015, 75, 33–38. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, J.; Liu, S.; Ma, M.; Fang, H.; Cheng, J.; Zhang, D. Non-Destructive Testing of Carbon Fibre Reinforced Plastics (CFRP) Using a Dual Transmitter-Receiver Differential Eddy Current Test Probe. Sensors 2022, 22, 6761. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Peyton, A.; Yin, W. Thickness measurement of metallic plates with finite planar dimension using eddy current method. IEEE Trans. Instrum. Meas. 2020, 69, 8424–8431. [Google Scholar] [CrossRef]
- Yin, W.; Huang, R.; Lu, M.; Zhang, Z.; Peyton, A. Measurements of Thickness for Metallic Plates with Co-Axial Holes Using a Novel Analytical Method with the Modified Integration Range. IEEE Access 2020, 8, 198301–198306. [Google Scholar] [CrossRef]
- Cheng, W. Measurement of Magnetic Plates at a Few Hertz with Two Concentric Coils and Thickness Estimation Using Mutual Inductance. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Hampton, J.; Fletcher, A.; Tesfalem, H.; Peyton, A.; Brown, M. A comparison of non-linear optimisation algorithms for recovering the conductivity depth profile of an electrically conductive block using eddy current inspection. NDT E Int. 2021, 125, 102571. [Google Scholar] [CrossRef]
- Lu, M.; Xie, Y.; Zhu, W.; Peyton, A.J.; Yin, W. Determination of the Magnetic Permeability, Electrical Conductivity, and Thickness of Ferrite Metallic Plates Using a Multifrequency Electromagnetic Sensing System. IEEE Trans. Ind. Inform. 2018, 15, 4111–4119. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Huang, J.; Liu, L.; Qin, S.; Fu, Z. A Novel Pulsed Eddy Current Criterion for Non-Ferromagnetic Metal Thickness Quantifications under Large Liftoff. Sensors 2022, 22, 614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bu, J.; Li, D.; Zhang, K.; Zhou, M. Coupling Interference between Eddy Current Sensors for the Radial Displacement Measurement of a Cylindrical Target. Sensors 2022, 22, 4375. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Niu, Y.; Wei, Y.; Ye, C. Multi-frequency imaging with non-linear calibration of magnetoresistance sensors for surface and buried defects inspection. NDT E Int. 2022, 132, 102706. [Google Scholar] [CrossRef]
- Santos, A.C.; Barrancos, A.; Rosado, L.S.; Janeiro, F.M. Low-cost multi-frequency eddy current coating thickness measurement system. In Proceedings of the 2022 International Young Engineers Forum (YEF-ECE), Caparica/Lisbon, Portugal, 1 July 2022; pp. 7–11. [Google Scholar] [CrossRef]
- Sudirman, S.; Natalia, F.; Sophian, A.; Ashraf, A. Pulsed Eddy Current signal processing using wavelet scattering and Gaussian process regression for fast and accurate ferromagnetic material thickness measurement. Alex. Eng. J. 2022, 61, 11239–11250. [Google Scholar] [CrossRef]
- Zhou, X.; Ruan, Y.; Mou, X.; Yuan, Y.; He, Y. A Design of Electromagnetic Velocity Sensor with High Sensitivity Based on Dual-Magnet Structure. Sensors 2022, 22, 6925. [Google Scholar] [CrossRef]
- Postolache, A.; Ribeiro, L.; Ramos, H.G. GMR array uniform eddy current probe for defect detection in conductive specimens. Measurement 2013, 46, 4369–4378. [Google Scholar] [CrossRef]
- Lu, M.; Yin, L.; Peyton, A.J.; Yin, W. A Novel Compensation Algorithm for Thickness Measurement Immune to Lift-Off Variations Using Eddy Current Method. IEEE Trans. Instrum. Meas. 2016, 65, 2773–2779. [Google Scholar] [CrossRef] [Green Version]
- Lopes Ribeiro, H.; Ramos, G.; Couto Arez, J. Liftoff insensitive thickness measurement of aluminum plates using harmonic eddy current excitation and a GMR sensor. Measurement 2012, 45, 2246–2253. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Z.; Yin, W.; Zhu, S.; Chen, Z.; Xu, H. Conductivity Classification of Non-Magnetic Tilting Metals by Eddy Current Sensors. Sensors 2020, 20, 2608. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, Z.; Yin, W.; Zhu, S.; Xu, H.; Chen, Z. A Novel Conductivity Classification Technique for Non-Magnetic Tilting Metals by Eddy Current Sensors. IEEE Access 2020, 8, 151125–151132. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Z.; Yin, W.; Tytko, G. Sloping-Invariance for Nonferrous Metallic Slabs at Multiple Frequencies by Eddy Current Sensors. IEEE Access 2021, 9, 59949–59956. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Yin, W.; Chen, H.; Yu, Z.; Wang, Q. A Novel Conductivity Classification Technique for Nonmagnetic Metal Immune to Tilt Variations Using Eddy Current Testing. IEEE Access 2021, 9, 135334–135342. [Google Scholar] [CrossRef]
- Wang, C.; Fan, M.; Cao, B.; Ye, B.; Li, W. Novel Noncontact Eddy Current Measurement of Electrical Conductivity. IEEE Sensors J. 2018, 18, 9352–9359. [Google Scholar] [CrossRef]
- Yin, W.; Xu, K. A Novel Triple-Coil Electromagnetic Sensor for Thickness Measurement Immune to Lift-Off Variations. IEEE Trans. Instrum. Meas. 2015, 65, 164–169. [Google Scholar] [CrossRef]
- Dodd, C.V.; Deeds, W.E. Analytical solutions to eddy-current probe-coil problems. J. Appl. Phys. 1968, 39, 2829–2838. [Google Scholar] [CrossRef]
- Fengzhang, R. (Ed.) Fundamentals of Materials Physics; Machinery Industry Press: Beijing, China, 2006. [Google Scholar]
- Zhiyong, G.; Xiehe, S.; Xianglong, M. (Eds.) Physical Properties of Materials and Their Analytical Test Methods; Harbin Institute of Technology Press: Harbin, China, 2015. [Google Scholar]
Parameter | Value |
---|---|
Inner radius of the coil (r1) | 0.8 mm |
Outer radius of the coil (r2) | 1.5 mm |
Height of the coil (h) | 1.9 mm |
Gap between the coils (g) | 1 mm |
Number of turns (N) | 100 |
Metal | Conductivity (MS/m) |
---|---|
Copper | 59.6 |
Aluminum | 37.7 |
Zinc | 16.9 |
Titanium | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, Z.; Yin, W.; Chen, H.; Ma, H.; Zhou, G.; Zhang, Y. Linear Characteristics of the Differences in Phase Tangents of Triple-Coil Electromagnetic Sensors and Their Application in Nonmagnetic Metal Classification. Sensors 2022, 22, 7511. https://doi.org/10.3390/s22197511
Wang D, Zhang Z, Yin W, Chen H, Ma H, Zhou G, Zhang Y. Linear Characteristics of the Differences in Phase Tangents of Triple-Coil Electromagnetic Sensors and Their Application in Nonmagnetic Metal Classification. Sensors. 2022; 22(19):7511. https://doi.org/10.3390/s22197511
Chicago/Turabian StyleWang, Dong, Zhijie Zhang, Wuliang Yin, Haoze Chen, Huidong Ma, Guangyu Zhou, and Yuchen Zhang. 2022. "Linear Characteristics of the Differences in Phase Tangents of Triple-Coil Electromagnetic Sensors and Their Application in Nonmagnetic Metal Classification" Sensors 22, no. 19: 7511. https://doi.org/10.3390/s22197511
APA StyleWang, D., Zhang, Z., Yin, W., Chen, H., Ma, H., Zhou, G., & Zhang, Y. (2022). Linear Characteristics of the Differences in Phase Tangents of Triple-Coil Electromagnetic Sensors and Their Application in Nonmagnetic Metal Classification. Sensors, 22(19), 7511. https://doi.org/10.3390/s22197511