Performance of Contactless Respiratory Rate Monitoring by Albus HomeTM, an Automated System for Nocturnal Monitoring at Home: A Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Albus System: Albus HomeTM Monitoring Device and RR Analytics
2.2. Participants
2.3. Validation and Analysis
3. Results
4. Discussion
4.1. Clinical Relevance and Principal Findings
4.2. Strengths and Limitations
4.3. Potential Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Churpek, M.M.; Yuen, T.C.; Huber, M.T.; Park, S.Y.; Hall, J.B.; Edelson, D.P. Predicting cardiac arrest on the wards: A nested case-control study. Chest 2012, 141, 1170–1176. [Google Scholar] [CrossRef]
- Yanez, A.M.; Guerrero, D.; Perez de Alejo, R.; Garcia-Rio, F.; Alvarez-Sala, J.L.; Calle-Rubio, M.; de Molina, R.M.; Valle Falcones, M.; Ussetti, P.; Sauleda, J.; et al. Monitoring breathing rate at home allows early identification of COPD exacerbations. Chest 2012, 142, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory rate: The neglected vital sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [CrossRef]
- Parshall, M.B.; Schwartzstein, R.M.; Adams, L.; Banzett, R.B.; Manning, H.L.; Bourbeau, J.; Calverley, P.M.; Gift, A.G.; Harver, A.; Lareau, S.C.; et al. An official American Thoracic Society statement: Update on the mechanisms, assessment, and management of dyspnea. Am. J. Respir. Crit. Care. Med. 2012, 185, 435–452. [Google Scholar] [CrossRef]
- Laviolette, L.; Laveneziana, P.; Faculty, E.R.S.R.S. Dyspnoea: A multidimensional and multidisciplinary approach. Eur. Respir. J. 2014, 43, 1750–1762. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.S.; Carty, S.M.; Macfarlane, J.T.; Anthony, R.E.; Christian, J.; Dakin, K.S.; Dennis, P.M. Respiratory rate measurement in adults--how reliable is it? Respir. Med. 2002, 96, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Pham, C.; Poorzargar, K.; Nagappa, M.; Saripella, A.; Parotto, M.; Englesakis, M.; Lee, K.; Chung, F. Effectiveness of consumer-grade contactless vital signs monitors: A systematic review and meta-analysis. J. Clin. Monit. Comput. 2022, 36, 41–54. [Google Scholar] [CrossRef]
- Ben-Ari, J.; Zimlichman, E.; Adi, N.; Sorkine, P. Contactless respiratory and heart rate monitoring: Validation of an innovative tool. J. Med. Eng. Technol. 2010, 34, 393–398. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Rubio, N.; Parker, R.A.; Drost, E.M.; Pinnock, H.; Weir, C.J.; Hanley, J.; Mantoani, L.C.; MacNee, W.; McKinstry, B.; Rabinovich, R.A. Home monitoring of breathing rate in people with chronic obstructive pulmonary disease: Observational study of feasibility, acceptability, and change after exacerbation. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Leenen, J.P.L.; Leerentveld, C.; van Dijk, J.D.; van Westreenen, H.L.; Schoonhoven, L.; Patijn, G.A. Current Evidence for Continuous Vital Signs Monitoring by Wearable Wireless Devices in Hospitalized Adults: Systematic Review. J. Med. Internet Res. 2020, 22, e18636. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.; Feng, Y.; Jarrahi, M.H.; Gafinowitz, N. Beyond novelty effect: A mixed-methods exploration into the motivation for long-term activity tracker use. JAMIA. Open 2019, 2, 62–72. [Google Scholar] [CrossRef]
- Sadek, I.; Biswas, J.; Abdulrazak, B. Ballistocardiogram signal processing: A review. Health Inf. Sci. Syst. 2019, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Barrera, A.; Gee, C.; Wood, A.; Gibson, O.; Bayley, D.; Geddes, J. Introducing artificial intelligence in acute psychiatric inpatient care: Qualitative study of its use to conduct nursing observations. Evid. Based Ment. Health 2020, 23, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Ballal, T.; Heneghan, C.; Zaffaroni, A.; Boyle, P.; de Chazal, P.; Shouldice, R.; McNicholas, W.T.; Donnelly, S.C. A pilot study of the nocturnal respiration rates in COPD patients in the home environment using a non-contact biomotion sensor. Physiol. Meas. 2014, 35, 2513–2527. [Google Scholar] [CrossRef] [PubMed]
- Drummond, G.B.; Bates, A.; Mann, J.; Arvind, D.K. Validation of a new non-invasive automatic monitor of respiratory rate for postoperative subjects. Br. J. Anaesth. 2011, 107, 462–469. [Google Scholar] [CrossRef]
- Agusti, A.; Hedner, J.; Marin, J.M.; Barbe, F.; Cazzola, M.; Rennard, S. Night-time symptoms: A forgotten dimension of COPD. Eur. Respir. Rev. 2011, 20, 183–194. [Google Scholar] [CrossRef]
- Durrington, H.J.; Farrow, S.N.; Loudon, A.S.; Ray, D.W. The circadian clock and asthma. Thorax 2014, 69, 90–92. [Google Scholar] [CrossRef]
- Sutherland, E.R. Nocturnal asthma. J. Allergy Clin. Immunol. 2005, 116, 1179–1186. [Google Scholar] [CrossRef]
- Reiter, J.; Gileles-Hillel, A.; Cohen-Cymberknoh, M.; Rosen, D.; Kerem, E.; Gozal, D.; Forno, E. Sleep disorders in cystic fibrosis: A systematic review and meta-analysis. Sleep Med. Rev. 2020, 51, 101279. [Google Scholar] [CrossRef]
- GINA. Global Strategy for Asthma Management and Prevention; Global Initiative for Asthma: Fontana-on-Geneva Lake, WI, USA, 2021. [Google Scholar]
- Juniper, E.F.; O′Byrne, P.M.; Guyatt, G.H.; Ferrie, P.J.; King, D.R. Development and validation of a questionnaire to measure asthma control. Eur. Respir. J. 1999, 14, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Nathan, R.A.; Sorkness, C.A.; Kosinski, M.; Schatz, M.; Li, J.T.; Marcus, P.; Murray, J.J.; Pendergraft, T.B. Development of the asthma control test: A survey for assessing asthma control. J. Allergy Clin. Immunol. 2004, 113, 59–65. [Google Scholar] [CrossRef]
- Falconer, A.; Oldman, C.; Helms, P. Poor agreement between reported and recorded nocturnal cough in asthma. Pediatr. Pulmonol. 1993, 15, 209–211. [Google Scholar] [CrossRef]
- Franciosi, L.G.; Page, C.P.; Celli, B.R.; Cazzola, M.; Walker, M.J.; Danhof, M.; Rabe, K.F.; Della Pasqua, O.E. Markers of exacerbation severity in chronic obstructive pulmonary disease. Respir. Res. 2006, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; Chiovaro, J.C.; O’Neil, M.; Kansagara, D.; Quinones, A.R.; Freeman, M.; Motu’apuaka, M.L.; Slatore, C.G. Early warning system scores for clinical deterioration in hospitalized patients: A systematic review. Ann. Am. Thorac. Soc. 2014, 11, 1454–1465. [Google Scholar] [CrossRef] [PubMed]
- Baumert, M.; Linz, D.; Stone, K.; McEvoy, R.D.; Cummings, S.; Redline, S.; Mehra, R.; Immanuel, S. Mean nocturnal respiratory rate predicts cardiovascular and all-cause mortality in community-dwelling older men and women. Eur. Respir. J. 2019, 54, 1802175. [Google Scholar] [CrossRef]
- Dommasch, M.; Sinnecker, D.; Barthel, P.; Muller, A.; Dirschinger, R.J.; Hapfelmeier, A.; Huster, K.M.; Laugwitz, K.L.; Malik, M.; Schmidt, G. Nocturnal respiratory rate predicts non-sudden cardiac death in survivors of acute myocardial infarction. J. Am. Coll. Cardiol. 2014, 63, 2432–2433. [Google Scholar] [CrossRef]
- Latten, G.H.P.; Spek, M.; Muris, J.W.M.; Cals, J.W.L.; Stassen, P.M. Accuracy and interobserver-agreement of respiratory rate measurements by healthcare professionals, and its effect on the outcomes of clinical prediction/diagnostic rules. PLoS ONE 2019, 14, e0223155. [Google Scholar] [CrossRef]
- Edmonds, Z.V.; Mower, W.R.; Lovato, L.M.; Lomeli, R. The reliability of vital sign measurements. Ann. Emerg. Med. 2002, 39, 233–237. [Google Scholar] [CrossRef]
- Crooks, M.G.; Hayman, Y.; Innes, A.; Williamson, J.; Wright, C.E.; Morice, A.H. Objective Measurement of Cough Frequency During COPD Exacerbation Convalescence. Lung 2016, 194, 117–120. [Google Scholar] [CrossRef]
- Nicolo, A.; Massaroni, C.; Passfield, L. Respiratory Frequency during Exercise: The Neglected Physiological Measure. Front. Physiol. 2017, 8, 922. [Google Scholar] [CrossRef] [PubMed]
- Homma, I.; Masaoka, Y. Breathing rhythms and emotions. Exp. Physiol. 2008, 93, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Houlding, E.; Mate, K.K.V.; Engler, K.; Ortiz-Paredes, D.; Pomey, M.P.; Cox, J.; Hijal, T.; Lebouche, B. Barriers to Use of Remote Monitoring Technologies Used to Support Patients With COVID-19: Rapid Review. JMIR Mhealth Uhealth 2021, 9, e24743. [Google Scholar] [CrossRef]
- Pinnock, H.; Murphie, P.; Vogiatzis, I.; Poberezhets, V. Telemedicine and virtual respiratory care in the era of COVID-19. ERJ. Open Res. 2022, 8, 00111–02022. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.Y.; McKinstry, B.; Fulton, O.; Buchner, M.; Pinnock, H. Patients′ and Clinicians′ Visions of a Future Internet-of-Things System to Support Asthma Self-Management: Mixed Methods Study. J. Med. Internet Res. 2021, 23, e22432. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.J.; van Rijssel, T.I.; Zuidgeest, M.G.P.; van Thiel, G.; Askin, S.; Fons-Martinez, J.; De Smedt, T.; de Boer, A.; Santa-Ana-Tellez, Y.; Gardarsdottir, H.; et al. Opportunities and Challenges for Decentralized Clinical Trials: European Regulators’ Perspective. Clin. Pharmacol. Ther. 2022, 112, 344–352. [Google Scholar] [CrossRef]
- Apostolaros, M.; Babaian, D.; Corneli, A.; Forrest, A.; Hamre, G.; Hewett, J.; Podolsky, L.; Popat, V.; Randall, P. Legal, Regulatory, and Practical Issues to Consider When Adopting Decentralized Clinical Trials: Recommendations From the Clinical Trials Transformation Initiative. Ther. Innov. Regul. Sci. 2020, 54, 779–787. [Google Scholar] [CrossRef]
- Khozin, S.; Coravos, A. Decentralized Trials in the Age of Real-World Evidence and Inclusivity in Clinical Investigations. Clin. Pharmacol. Ther. 2019, 106, 25–27. [Google Scholar] [CrossRef]
Participants | 32 total (24 adults, 8 children; 18 healthy volunteers, 14 chronic respiratory conditions) |
Age (range) | Median = 29 (6–79 years) |
Body Mass Index (range) | Median = 22 (13–42) |
Sex | 17 females, 15 males |
Bedroom occupancy | 22 single sleepers, 10 bed/room-sharers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, W.; Russell, R.; Wheeler, C.; Lockwood, M.; De Vos, M.; Pavord, I.; Bafadhel, M. Performance of Contactless Respiratory Rate Monitoring by Albus HomeTM, an Automated System for Nocturnal Monitoring at Home: A Validation Study. Sensors 2022, 22, 7142. https://doi.org/10.3390/s22197142
Do W, Russell R, Wheeler C, Lockwood M, De Vos M, Pavord I, Bafadhel M. Performance of Contactless Respiratory Rate Monitoring by Albus HomeTM, an Automated System for Nocturnal Monitoring at Home: A Validation Study. Sensors. 2022; 22(19):7142. https://doi.org/10.3390/s22197142
Chicago/Turabian StyleDo, William, Richard Russell, Christopher Wheeler, Megan Lockwood, Maarten De Vos, Ian Pavord, and Mona Bafadhel. 2022. "Performance of Contactless Respiratory Rate Monitoring by Albus HomeTM, an Automated System for Nocturnal Monitoring at Home: A Validation Study" Sensors 22, no. 19: 7142. https://doi.org/10.3390/s22197142
APA StyleDo, W., Russell, R., Wheeler, C., Lockwood, M., De Vos, M., Pavord, I., & Bafadhel, M. (2022). Performance of Contactless Respiratory Rate Monitoring by Albus HomeTM, an Automated System for Nocturnal Monitoring at Home: A Validation Study. Sensors, 22(19), 7142. https://doi.org/10.3390/s22197142