User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control
Abstract
:1. Introduction
Attributes: | Enables Multiple ADLs in Individuals w. CFT | Efficient, Robust, and Continuous Control Interface Useable by Individuals w. CFT | Individuals w. CFT Can Control All Motions Fully | Calibration Time | Designed for Existing Context * | Computer Vision Based Semi-Automation | Compact and Light Exoskeleton Design | Aesthetical Concerns (Social Context) | CFT Pathology Specific Safety (AD) | Safety Considerations (Safe Human Operation) | Tests Performed | Adjust-Able Design | Basic Technical Functions | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Studies: | ||||||||||||||
The EXOTIC exoskeleton system for tetraplegia (This study) | Multiple ADLs demonstrated in individuals w. CFT | Intraoral, efficient (0.76 s to start command [36]), robust interface (not affected by environment and commercially available). | Full manual control over all DoFs | Short tongue interface calibration (<1 min) | Wheelchair mountable, wheelchair battery-powered (24 V). | Simultaneously available shared control w. semi-automation based on computer vision and manual control | Compact, Motors parallel to arm, inner rotational joints encircle arm (3.7 kg) | “Invisible” interface, Compact exoskeleton design | Two strap wrist/palm. Open Orthopaedic braces. Loose mounting to avoid AD. | Physical stoppers to limit joints, wheelchair battery operated, current limited, open-brace design (easy to pull out), only moves while being commanded. | Four ADLs on ten able-bodied and three individuals w. CFT. | Adjust-able link lengths | 4 arm DoFs, 1 hand DoF | |
EEG/EOG semi-autonomous exoskeleton for stroke (Nann et al. [22], Crea et al. [23]) | One ADL demonstrated in individual w. chronic stroke. (drinking task) | EEG/EOG-based interface (1.43 s to initialize command). EEG is sensitive to multiple factors (EMI, biological) | Semi-automated state-based control only | Longer than EXOTIC (6 min and 18 s calibration time) | Wheelchair mounted. Power requirement NA. | Only operates with semi-automation based on computer vision. | Larger than the EXOTIC system (13 kg) | VI: Visible, protruding interface, larger exoskeleton. | VI: Two strap, arm/hand, open brace design. | Physical stoppers to limit joints, open-brace design (easy to pull out), veto signal (users able to send a stop signal), SEA joints. | One ADL on seven able-bodied and five individuals w. chronic stroke. None w. CFT. | Adjust-able link lengths | 5 arm DoFs, 4 hand DoFs | |
Recupera exoskeleton for stroke rehabilitation (Kirchner et al. [15] Kumar et al. [16]). | No ADLs demonstrated (only exercises). | NR/Relies on residual movement | NR/Relies on residual movement | NR/No relevant user interface to assess. | Wheelchair mounted. Custom 48 V batteries for power | NA/NR | VI: Compact, but protruding significantly from lower arm (4.3 kg) | VI: Compact but protruding. No relevant user interface to assess. | VI: Two strap, upper/lower arm, open brace design. | Physical stoppers, battery operated, current limited. No relevant user interface to assess. | Exercises w. one able-bodied individual one w. chronic stroke. None w. CFT. | Adjust-able arm links | 5 arm DoFs, 1 hand DoF | |
HAL-UL exoskeleton for assisting the elderly (Otsuka et al. [20]) | One ADL demonstrated in able-bodied individual. (drinking task) | NR/Relies on residual movement | NR/Relies on residual movement | NR/No relevant user interface to assess. | VI: Likely wheelchair mountable. Power requirement NA. | NA/NR | VI: Compact, Motors parallel to arm, inner rotational joints encircle arm (weight NA) | VI: Compact exoskeleton design. No relevant user interface to assess. | VI: Wrist strap. One open, one closed brace | Physical stoppers. No relevant user interface to assess. | One ADL on an able-bodied individual. None w. CFT. | NA | 4 arm DoFs, 1 hand DoF |
2. System Design
2.1. Overview
2.2. Exoskeleton Design
2.3. Control Interface
2.4. Computer Vision-Based Shared Control System
3. Methods
3.1. Exoskeleton Control
3.2. Intelligent Control
3.3. Tongue Control Interface Adaptations
3.4. Test of the EXOTIC Exoskeleton
3.4.1. Participants
Able-Bodied Individuals
Individuals with Tetraplegia (Users)
3.4.2. Experiment Description and Setup
Able-Bodied Individuals
Individuals with Tetraplegia (Users)
3.4.3. Experiment Setup
3.4.4. Experiment Tasks
4. Results
Interviews
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bickenbach, J.; Officer, A.; Shakespeare, T.; von Groote, P. International Perspectives on Spinal Cord Injury; Bickenbach, J., Ed.; World Health Organization: Geneva, Switzerland, 2013; ISBN 978 92 4 156466 3. [Google Scholar]
- Wyndaele, M.; Wyndaele, J.J. Incidence, Prevalence and Epidemiology of Spinal Cord Injury: What Learns a Worldwide Literature Survey? Spinal Cord 2006, 44, 523–529. [Google Scholar] [CrossRef]
- Jackson, A.B.; Dijkers, M.; Devivo, M.J.; Poczatek, R.B. A Demographic Profile of New Traumatic Spinal Cord Injuries: Change and Stability over 30 Years. Arch. Phys. Med. Rehabil. 2004, 85, 1740–1748. [Google Scholar] [CrossRef]
- Manns, P.J.; Chad, K.E. Components of Quality of Life for Persons with a Quadriplegic and Paraplegic Spinal Cord Injury. Qual. Health Res. 2001, 11, 795–811. [Google Scholar] [CrossRef]
- Williams, R.; Murray, A. Prevalence of Depression after Spinal Cord Injury: A Meta-Analysis. Arch. Phys. Med. Rehabil. 2015, 96, 133–140. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs Population Division. World Population Ageing 2015; ST/ESA/SER.A/390; United Nations: New York, NY, USA, 2015; ISBN 9210578546. [Google Scholar]
- Maheu, V.; Frappier, J.; Archambault, P.S.; Routhier, F. Evaluation of the JACO Robotic Arm: Clinico-Economic Study for Powered Wheelchair Users with Upper-Extremity Disabilities. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–5. [Google Scholar]
- Chung, C.S.; Wang, H.; Cooper, R.A. Functional Assessment and Performance Evaluation for Assistive Robotic Manipulators: Literature Review. J. Spinal Cord Med. 2013, 36, 273–289. [Google Scholar] [CrossRef]
- Gull, M.A.; Bai, S.; Bak, T. A Review on Design of Upper Limb Exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef]
- Islam, M.R.; Spiewak, C.; Rahman, M.H.; Fareh, R. A Brief Review on Robotic Exoskeletons for Upper Extremity Rehabilitation to Find the Gap between Research Porotype and Commercial Type. Adv. Robot. Autom. 2017, 6, 2. [Google Scholar] [CrossRef]
- Nef, T.; Mihelj, M.; Kiefer, G.; Perndl, C.; Muller, R.; Riener, R. ARMin-Exoskeleton for Arm Therapy in Stroke Patients. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 68–74. [Google Scholar]
- Kim, B.; Deshpande, A.D. An Upper-Body Rehabilitation Exoskeleton Harmony with an Anatomical Shoulder Mechanism: Design, Modeling, Control, and Performance Evaluation. Int. J. Robot. Res. 2017, 36, 414–435. [Google Scholar] [CrossRef]
- Gopura, R.A.R.C.; Kiguchi, K.; Li, Y. SUEFUL-7: A 7DOF Upper-Limb Exoskeleton Robot with Muscle-Model-Oriented EMG-Based Control. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1126–1131. [Google Scholar]
- Huang, J.; Tu, X.; He, J. Design and Evaluation of the RUPERT Wearable Upper Extremity Exoskeleton Robot for Clinical and In-Home Therapies. IEEE Trans Syst. Man Cybern. Syst. 2016, 46, 926–935. [Google Scholar] [CrossRef]
- Kirchner, E.A.; Will, N.; Simnofske, M.; Benitez, L.M.V.; Bongardt, B.; Krell, M.M.; Kumar, S.; Mallwitz, M.; Seeland, A.; Tabie, M.; et al. Recupera-Reha: Exoskeleton Technology with Integrated Biosignal Analysis for Sensorimotor Rehabilitation. In Technische Unterstützungssysteme, die die Menschen Wirklich Wollen; Helmudt-Schmidt-Universität/Universität der Bundeswehr Hamburg: Hamburg, Germany, 2016; pp. 504–517. ISBN 978-3-86818-090-9. [Google Scholar]
- Kumar, S.; Wöhrle, H.; Trampler, M.; Simnofske, M.; Peters, H.; Mallwitz, M.; Kirchner, E.A.; Kirchner, F. Modular Design and Decentralized Control of the RECUPERA Exoskeleton for Stroke Rehabilitation. Appl. Sci. 2019, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Garrec, P.; Friconneau, J.P.; Measson, Y.; Perrot, Y. ABLE, an Innovative Transparent Exoskeleton for the Upper-Limb. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 1483–1488. [Google Scholar]
- Kapsalyamov, A.; Hussain, S.; Jamwal, P.K. State-of-the-Art Assistive Powered Upper Limb Exoskeletons for Elderly. IEEE Access 2020, 8, 178991–179001. [Google Scholar] [CrossRef]
- Bai, S.B.; Christensen, S.; Islam, M.; Rafique, S.; Masud, N. Development and Testing of Full-Body Exoskeleton AXO-SUIT for physical assistance of the elderly. In Wearable Robotics: Challenges and Trends. WeRob 2018. Biosystems & Biorobotics; Springer: Cham, Switzerland, 2018; Volume 22, pp. 180–184. [Google Scholar]
- Otsuka, T.; Kawaguchi, K.; Kawamoto, H.; Sankai, Y. Development of Upper-Limb Type HAL and Reaching Movement for Meal-Assistance. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO, Karon Beach, Thailand, 7–11 December 2011; pp. 883–888. [Google Scholar] [CrossRef]
- Sui, D.; Fan, J.; Jin, H.; Cai, X.; Zhao, J.; Zhu, Y. Design of a Wearable Upper-Limb Exoskeleton for Activities Assistance of Daily Living. In Proceedings of the 2017 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Munich, Germany, 3–7 July 2017; pp. 845–850. [Google Scholar] [CrossRef]
- Nann, M.; Cordella, F.; Trigili, E.; Lauretti, C.; Bravi, M.; Miccinilli, S.; Catalan, J.M.; Badesa, F.J.; Crea, S.; Bressi, F.; et al. Restoring Activities of Daily Living Using an EEG/EOG-Controlled Semiautonomous and Mobile Whole-Arm Exoskeleton in Chronic Stroke. IEEE Syst. J. 2020, 15, 8–12. [Google Scholar] [CrossRef]
- Crea, S.; Nann, M.; Trigili, E.; Cordella, F.; Baldoni, A.; Badesa, F.J.; Catalán, J.M.; Zollo, L.; Vitiello, N.; Aracil, N.G.; et al. Feasibility and Safety of Shared EEG/EOG and Vision-Guided Autonomous Whole-Arm Exoskeleton Control to Perform Activities of Daily Living. Sci. Rep. 2018, 8, 10823. [Google Scholar] [CrossRef]
- Barsotti, M.; Leonardis, D.; Loconsole, C.; Solazzi, M.; Sotgiu, E.; Procopio, C.; Chisari, C.; Bergamasco, M.; Frisoli, A. A Full Upper Limb Robotic Exoskeleton for Reaching and Grasping Rehabilitation Triggered by MI-BCI. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics, Singapore, 11–14 August 2015; pp. 49–54. [Google Scholar] [CrossRef]
- Caltenco, H.A.; Breidegard, B.; Jönsson, B.; Andreasen Struijk, L.N.S. Understanding Computer Users With Tetraplegia: Survey of Assistive Technology Users. Int. J. Hum. Comput. Interact. 2012, 28, 258–268. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Webb, J.D. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People with Motion Impairments. IEEE Trans. Biomed. Eng. 2017, 64, 2824–2835. [Google Scholar] [CrossRef]
- Bouton, C.E.; Shaikhouni, A.; Annetta, N.V.; Bockbrader, M.A.; Friedenberg, D.A.; Nielson, D.M.; Sharma, G.; Sederberg, P.B.; Glenn, B.C.; Mysiw, W.J.; et al. Restoring Cortical Control of Functional Movement in a Human with Quadriplegia. Nature 2016, 533, 247–250. [Google Scholar] [CrossRef]
- Soekadar, S.R.; Witkowski, M.; Gómez, C.; Opisso, E.; Medina, J.; Cortese, M.; Cempini, M.; Carrozza, M.C.; Cohen, L.G.; Birbaumer, N.; et al. Hybrid EEG/EOG-Based Brain/Neural Hand Exoskeleton Restores Fully Independent Daily Living Activities after Quadriplegia. Sci. Robot. 2016, 1, eaag3296. [Google Scholar] [CrossRef] [Green Version]
- Readioff, R.; Siddiqui, Z.K.; Stewart, C.; Fulbrook, L.; O’Connor, R.J.; Chadwick, E.K. Use and Evaluation of Assistive Technologies for Upper Limb Function in Tetraplegia. J. Spinal Cord Med. 2021, 1–12. [Google Scholar] [CrossRef]
- Bengtson, S.H.; Bak, T.; Andreasen Struijk, L.N.S.; Moeslund, T.B. A Review of Computer Vision for Semi-Autonomous Control of Assistive Robotic Manipulators (ARMs). Disabil. Rehabil. Assist. Technol. 2020, 15, 731–745. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, D.J.; Knudsen, R.; Godfrey, H.; Rucks, G.; Cunningham, T.; Portée, D.; Bricout, J.; Bricout, J.; Wang, Z.; et al. How Autonomy Impacts Performance and Satisfaction: Results from a Study with Spinal Cord Injured Subjects Using an Assistive Robot. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012, 42, 2–14. [Google Scholar] [CrossRef]
- Hildebrand, M.; Bonde, F.; Kobborg, R.V.N.; Andersen, C.; Norman, A.F.; Thogersen, M.; Bengtson, S.H.; Dosen, S.; Struijk, L.N.S.A. Semi-Autonomous Tongue Control of an Assistive Robotic Arm for Individuals with Quadriplegia. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 157–162. [Google Scholar]
- Hill, D.; Holloway, C.S.; Morgado Ramirez, D.Z.; Smitham, P.; Pappas, Y. What Are User Perspectives of Exoskeleton Technology? A Literature Review. Int. J. Technol. Assess Health Care 2017, 33, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, K.; Wobbrock, J.O. In the Shadow of Misperception: Assistive technology use and social interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7 May 2011; ACM: New York, NY, USA, 2011; pp. 705–714. [Google Scholar]
- Victor Kobbelgaard, F.; Bødker, S.; Kanstrup, A.M. Designing a Game to Explore Human Artefact Ecologies for Assistive Robotics. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, Tallinn, Estonia, 25–29 October 2020; pp. 1–10. [Google Scholar]
- Kobbelgaard, F.V.; Kanstrup, A.M.; Struijk, L.N.S.A. Exploring User Requirements for an Exoskeleton Arm: Insights from a User-Centered Study with People Living with Severe Paralysis. In Proceedings of the INTERACT 2021, Bari, Italy, 30 August–3 September 2021; Springer LNCS In Press. ; pp. 312–320. [Google Scholar]
- Mohammadi, M.; Knoche, H.; Gaihede, M.; Bentsen, B.; Andreasen Struijk, L.N.S. A High-Resolution Tongue-Based Joystick to Enable Robot Control for Individuals with Severe Disabilities. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1043–1048. [Google Scholar]
- Kintsch, A.; Depaula, R. A Framework for the Adoption of Assistive Technology. In Proceedings of the SWAAAC 2002: Supporting Learning through Assistive Technology; Assistive Technology Partners: Winter Park, FL, USA, 2002; pp. E3, 1–10. [Google Scholar]
- Eldahan, K.C.; Rabchevsky, A.G. Autonomic Dysreflexia after Spinal Cord Injury: Systemic Pathophysiology and Methods of Management. Auton. Neurosci. 2018, 209, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Dezman, M.; Asfour, T.; Ude, A.; Gams, A. Exoskeleton Arm Pronation/Supination Assistance Mechanism With A Guided Double Rod System. In Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, ON, Canada, 15–17 October 2019; pp. 559–564. [Google Scholar]
- Hofmann, U.A.T.; Bützer, T.; Lambercy, O.; Gassert, R. Design and Evaluation of a Bowden-Cable-Based Remote Actuation System for Wearable Robotics. IEEE Robot. Autom. Lett. 2018, 3, 2101–2108. [Google Scholar] [CrossRef]
- Sasaki, D.; Noritsugu, T.; Takaiwa, M. Development of Active Support Splint Driven by Pneumatic Soft Actuator (ASSIST). In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 520–525. [Google Scholar]
- Lessard, S.; Pansodtee, P.; Robbins, A.; Baltaxe-Admony, L.B.; Trombadore, J.M.; Teodorescu, M.; Agogino, A.; Kurniawan, S. CRUX: A Compliant Robotic Upper-Extremity Exosuit for Lightweight, Portable, Multi-Joint Muscular Augmentation. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1633–1638. [Google Scholar]
- Casanova-Batlle, E.; de Zee, M.; Thøgersen, M.; Tillier, Y.; Andreasen Struijk, L.N.S. The impact of an underactuated arm exoskeleton on wrist and elbow kinematics during Prioritized Activities of daily living. J. Biomech. 2022, 139, 111137. [Google Scholar] [CrossRef]
- Van Der Heide, L.A.; Van Ninhuijs, B.; Bergsma, A.; Gelderblom, G.J.; Van Der Pijl, D.J.; De Witte, L.P. An Overview and Categorization of Dynamic Arm Supports for People with Decreased Arm Function. Prosthet. Orthot. Int. 2014, 38, 287–302. [Google Scholar] [CrossRef]
- Gull, M.A.; Thoegersen, M.; Bengtson, S.H.; Mohammadi, M.; Struijk, N.S.A.; Moeslund, T.B.; Bak, T.; Bai, S. A 4-DOF Upper Limb Exoskeleton for Physical Assistance: Design, Modeling, Control and Performance Evaluation. Appl. Sci. 2021, 11, 5865. [Google Scholar] [CrossRef]
- Chaparro-Rico, B.D.M.; Cafolla, D.; Ceccarelli, M.; Castillo-Castaneda, E. NURSE-2 DoF Device for Arm Motion Guidance: Kinematic, Dynamic, and FEM Analysis. Appl. Sci. 2020, 10, 2139. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-León, J.F.; Chaparro-Rico, B.D.M.; Russo, M.; Cafolla, D. An Autotuning Cable-Driven Device for Home Rehabilitation. J. Healthc. Eng. 2021, 2021, 6680762. [Google Scholar] [CrossRef]
- Andreasen Struijk, N.S.L.; Lontis, E.R.; Gaihede, M.; Caltenco, H.A.; Lund, M.E.; Schioeler, H.; Bentsen, B. Development and Functional Demonstration of a Wireless Intraoral Inductive Tongue Computer Interface for Severely Disabled Persons. Disabil. Rehabil. Assist. Technol. 2017, 12, 631–640. [Google Scholar] [CrossRef]
- Struijk, L.N.S.A. An Inductive Tongue Computer Interface for Control of Computers and Assistive Devices. IEEE Trans. Biomed. Eng. 2006, 53, 2594–2597. [Google Scholar] [CrossRef]
- Lontis, E.R.; Bentsen, B.; Gaihede, M.; Andreasen Struijk, L.N.S. Sensor Activation for Wheelchair Driving in Confined Spaces with a Tongue Controlled Oral Interface. In Proceedings of the International Convention on Rehabilitation Engineering & Assistive Technology, Bangkok, Thailand, 25–28 July 2016; pp. 1–4. [Google Scholar]
- Andreasen Struijk, L.N.S.; Egsgaard, L.L.; Lontis, R.; Gaihede, M.; Bentsen, B. Wireless Intraoral Tongue Control of an Assistive Robotic Arm for Individuals with Tetraplegia. J. Neuroeng. Rehabil. 2017, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Andreasen Struijk, L.N.S.; Bentsen, B.; Gaihede, M.; Lontis, E.R. Error-Free Text Typing Performance of an Inductive Intra-Oral Tongue Computer Interface for Severely Disabled Individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2094–2104. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.E.; Christiensen, H.V.; Caltenco, H.A.; Lontis, E.R.; Bentsen, B.; Andreasen Struijk, L.N.S. Inductive Tongue Control of Powered Wheelchairs. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3361–3364. [Google Scholar]
- Johansen, D.; Cipriani, C.; Popovic, D.B.; Struijk, L.N.S.A. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application. IEEE Trans. Biomed. Eng. 2016, 63, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Clausen, J.; Fetz, E.; Donoghue, J.; Ushiba, J.; Spörhase, U.; Chandler, J.; Birbaumer, N.; Soekadar, S.R. Help, Hope, and Hype: Ethical Dimensions of Neuroprosthetics. Science 2017, 356, 1338–1339. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Gordon, E.K.; Scalise, R.; Cabrera, M.E.; Caspi, A.; Cakmak, M.; Srinivasa, S.S. Is More Autonomy Always Better? In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 9 March 2020; pp. 181–190. [Google Scholar]
- MoveIt. Available online: https://moveit.ros.org (accessed on 11 September 2022).
- KDL: Kinematics and Dynamics Library. Available online: https://orocos.org/kdl.html (accessed on 11 September 2022).
- Jog_Control Package. Available online: https://wiki.ros.org/jog_control (accessed on 11 September 2022).
- Rusu, R.B.; Cousins, S. 3D Is Here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Bengtson, S.H.; Thøgersen, M.B.; Mohammadi, M.; Kobbelgaard, F.V.; Gull, M.A.; Struijk, L.N.S.A.; Bak, T.; Moeslund, T.B. Computer Vision-Based Adaptive Semi-Autonomous Control of an Upper Limb Exoskeleton for Individuals with Tetraplegia. Appl. Sci. 2022, 12, 4374. [Google Scholar] [CrossRef]
- Mohammadi, M.; Knoche, H.; Bentsen, B.; Gaihede, M.; Andreasen Struijk, L.N.S. A Pilot Study on a Novel Gesture-Based Tongue Interface for Robot and Computer Control. In Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, 26–28 October 2020; pp. 906–913. [Google Scholar]
- Mohammadi, M.; Knoche, H.; Andreasen Struijk, L.N.S. Continuous Tongue Robot Mapping for Paralyzed Individuals Improves the Functional Performance of Tongue-Based Robotic Assistance. IEEE Trans. Biomed. Eng. 2021, 1, 92–94. [Google Scholar] [CrossRef]
- Lontis, E.R.; Lund, M.E.; Christensen, H.V.; Bentsen, B.; Gaihede, M.; Caltenco, H.A.; Andreasen Struijk, L.N.S. Clinical Evaluation of Wireless Inductive Tongue Computer Interface for Control of Computers and Assistive Devices. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3365–3368. [Google Scholar] [CrossRef]
- Mohammadi, M.; Knoche, H.; Thøgersen, M.; Bengtson, S.H.; Gull, M.A.; Bentsen, B.; Gaihede, M.M.; Severinsen, K.E.; Struijk, L.N.S.A. Eyes-Free Gesture Based Tongue Control of a Five DOF Upper-Limb Exoskeleton for Severely Paralyzed Individuals. Front. Neurosci. 2021, 15, 739279. [Google Scholar] [CrossRef]
Link | ai | αi | di | θi |
---|---|---|---|---|
1 | 0 | π/2 | 0 | π/2 − θ1 |
2 | 0 | π/2 | Lu | π + θ2 |
3 | 0 | −π/2 | 0 | θ3 |
4 | 0 | 0 | Lf | θ4 |
Age (Years since Injury) | Neurological Levels | Neurological Level of Injury | Complete/ Incomplete | ASIA Impairment Scale | Zone of Partial Preservation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensory | Motor | Sensory | Motor | |||||||||
User | L | R | L | R | L | R | L | R | ||||
1 | 59 (0.6) | C4 | C4 | C5 | C4 | C4 | I | D | NA | NA | NA | NA |
2 | 52 (32) | C5 | C5 | C6 | C7 | C5 | C | A | T11 | L3 | S1 | S1 |
3 * | 23 (0.7) | C2 | C3 | C2 | C3 | C2 | I | C | NA | NA | L3 | L3 |
Able-Bodied Individuals | Individuals with Tetraplegia | |||||||
---|---|---|---|---|---|---|---|---|
Measure | Bottle | Scratch Stick | Strawberry | Switch | Bottle | Scratch Stick | Strawberry | Switch |
Time to object [s] | 17.66 ± 4.13 | 29.66 ± 8.25 | 20.69 ± 4.09 | 34.30 ± 10.78 | 21.08 ± 4.05 | 44.17 ± 17.94 | 33.58 ± 13.44 | 41.39 ± 9.47 |
Time to reach mouth/ face shield [s] | 21.02 ± 8.04 | 40.62 ± 15.76 | 42.05 ± 12.99 | 34.30 ± 12.00 | 62.50 ± 15.91 | 58.69 ± 9.82 | ||
Number of commands until object [#] | 4.60 ± 1.78 | 6.62 ± 2.41 | 5.10 ± 1.86 | 9.31 ± 3.95 | 6.22 ± 1.71 | 11.94 ± 3.87 | 8.78 ± 2.78 | 11.33 ± 2.83 |
Number of commands to face [#] | 5.37 ± 2.82 | 9.10 ± 2.82 | 9.35 ± 4.33 | 7.78 ± 3.37 | 15.06 ± 8.94 | 13.89 ± 5.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thøgersen, M.B.; Mohammadi, M.; Gull, M.A.; Bengtson, S.H.; Kobbelgaard, F.V.; Bentsen, B.; Khan, B.Y.A.; Severinsen, K.E.; Bai, S.; Bak, T.; et al. User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control. Sensors 2022, 22, 6919. https://doi.org/10.3390/s22186919
Thøgersen MB, Mohammadi M, Gull MA, Bengtson SH, Kobbelgaard FV, Bentsen B, Khan BYA, Severinsen KE, Bai S, Bak T, et al. User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control. Sensors. 2022; 22(18):6919. https://doi.org/10.3390/s22186919
Chicago/Turabian StyleThøgersen, Mikkel Berg, Mostafa Mohammadi, Muhammad Ahsan Gull, Stefan Hein Bengtson, Frederik Victor Kobbelgaard, Bo Bentsen, Benjamin Yamin Ali Khan, Kåre Eg Severinsen, Shaoping Bai, Thomas Bak, and et al. 2022. "User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control" Sensors 22, no. 18: 6919. https://doi.org/10.3390/s22186919