Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection
Abstract
:1. Introduction
2. Principle
2.1. Fiber Optic Oxygen Sensor
2.2. All-Phase Fast Fourier Transform (apFFT)
3. System Design
3.1. System Structure of Fiber Optic Oxygen Sensor
3.2. The Optical Path Component of the Fiber Optic Oxygen Sensor
4. Results and Discussion
4.1. Experimental Results of apFFT
4.2. Experimental Results of Fiber Optic Oxygen Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Limpouchová, Z.; Procházka, K. Theoretical principles of fluorescence spectroscopy. In Fluorescence Studies of Polymer Containing Systems; Procházka, K., Ed.; Springer International Publishing: Cham, Swizerland, 2016; pp. 91–149. [Google Scholar]
- Lakowicz, J.R. (Ed.) Mechanisms and dynamics of fluorescence quenching. In Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; pp. 331–351. [Google Scholar]
- Li, X.; Liu, L.; Yu, C.; Ca, T.; Xu, Y.; Zhong, Z. Survey of dissolved oxygen sensors based on fluorescence quenching principle. Jiangxi Chem. Ind. 2020, 36, 1–6. [Google Scholar]
- Er, Z.; Gong, P.; Zhou, J.; Wang, Y.; Jiang, X.; Xie, L. Dissolved oxygen sensor based on the fluorescence quenching method with optimal modulation frequency. Appl. Opt. 2022, 61, 4865–4873. [Google Scholar] [CrossRef]
- Chen, R.; Formenti, F.; McPeak, H.; Obeid, A.N.; Hahn, C.E.W.; Farmery, A.D. Optimizing design for polymer fiber optic oxygen sensors. IEEE Sens. J. 2014, 14, 3358–3364. [Google Scholar] [CrossRef]
- Ramamoorthy, R.; Dutta, P.K.; Akbar, S.A. Oxygen sensors: Materials, methods, designs and applications. J. Mater. Sci. 2003, 38, 4271–4282. [Google Scholar] [CrossRef]
- Werner, J.; Belz, M.; Klein, K.-F.; Sun, T.; Grattan, K.T.V. Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement. Measurement 2021, 178, 109323. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Q. A reflective optical fiber SPR sensor with surface modified hemoglobin for dissolved oxygen detection. Alex. Eng. J. 2021, 60, 4115–4120. [Google Scholar] [CrossRef]
- Semwal, V.; Gupta, B.D. Highly selective SPR based fiber optic sensor for the detection of hydrogen peroxide. Sens. Actuators B Chem. 2021, 329, 129062. [Google Scholar] [CrossRef]
- Qiu, W.; Nagl, S. Automated miniaturized digital microfluidic antimicrobial susceptibility test using a chip-integrated optical oxygen sensor. ACS Sens. 2021, 6, 1147–1156. [Google Scholar] [CrossRef]
- Chen, M.; He, Y.; Liang, H.; Zhou, H.; Wang, X.; Heng, X.; Zhang, Z.; Gan, J.; Yang, Z. Stretchable and strain-decoupled fluorescent optical fiber sensor for body temperature and movement monitoring. ACS Photonics 2022, 9, 1415–1424. [Google Scholar] [CrossRef]
- Falcucci, T.; Presley, K.; Choi, J.; Fizpatrick, V.; Barry, J.; Sahoo, J.K.; Ly, J.; Grusenmeyer, T.; Dalton, M.; Kaplan, D. Degradable silk-based subcutaneous oxygen sensors. Adv. Funct. Mater. 2022, 32, 2202020. [Google Scholar] [CrossRef]
- Magdalena, J.A.; Angenent, L.; Usack, J. The measurement, application and effect of oxygen in microbial fermentations: Focusing on methane and carboxylate production. Fermentation 2022, 8, 138. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yuan, D.; Zhang, Y.; Bingwei, W.; Feng, X. New method for calibrating optical dissolved oxygen sensors in seawater based on an intelligent learning algorithm. Environ. Monit. Assess. 2022, 194, 39. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhu, L.; Su, Z. Application of CO2 and Oxygen in non-tube rapid propagation of plants. Acta Agric. Boreali Sin. 2005, S1, 113–118. [Google Scholar] [CrossRef]
- Köneke, R.; Comte, A.; Jürgens, H.; Kohls, O.; Lam, H.; Scheper, T. Fiber optic oxygen sensors for use in biotechnology, environmental, and food industries. Chem. Eng. Technol. 1999, 22, 666–671. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, L.; Zhong, W.; Meng, S.; Yong, B.; Song, Y.; Wang, X.; Bai, C. Development of fiber optic fluorescence oxygen sensor in both in vitro and in vivo systems. Respir. Physiol. Neurobiol. 2008, 161, 160–166. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Zeng, Y.; Yang, C.; Li, H.; Fan, H.; Hahn, C.E.W.; Farmery, A.D.; Chen, R. Cell culture pO2 monitoring with a fiber optic oxygen sensor. Biomed. Phys. Eng. Express 2016, 2, 057001. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, S.; Xiao, L. Development of fiber optic dissolved oxygen sensor based on fluorescence quenching. Opt. Optoelectron. Technol. 2013, 11, 64–66. [Google Scholar]
- Wang, F.; Chang, J.; Chen, X.; Wang, Z.; Wang, Q.; Wei, Y.; Qin, Z. Optical fiber oxygen sensor utilizing a robust phase demodulator. Measurement 2017, 95, 1–7. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Z. Anti-noise performance of all-phase FFT phase measuring method. J. Data Acquis. Process. 2011, 26, 286–291. [Google Scholar]
- Jia, C. Phase Demodulation Method and Stability and Repeatability of Fiber Optic Oxygen Sensor Based on Fluorescence Quenching. Master’s Thesis, Shandong University, Jinan, China, 2016. [Google Scholar]
- He, C.; Xu, P.; Zhang, X.; Long, W. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon 2022, 186, 91–127. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, W. Single-molecule fluorescence imaging of nanocatalysis. Chin. J. Chem. 2021, 39, 1459–1470. [Google Scholar] [CrossRef]
- Kotnala, A.; Ding, H.; Zheng, Y. Enhancing single-molecule fluorescence spectroscopy with simple and robust hybrid nanoapertures. ACS Photonics 2021, 8, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Song, X.; Wan, W.; Chen, Y.; Si, H.; Duan, H.; Li, L.; Tang, B. Kinetics of the photoelectron-transfer process characterized by real-time single-molecule fluorescence imaging on individual photocatalyst particles. ACS Catal. 2021, 11, 6872–6882. [Google Scholar] [CrossRef]
- Barulin, A.; Roy, P.; Claude, J.-B.; Wenger, J. Ultraviolet optical horn antennas for label-free detection of single proteins. Nat. Commun. 2022, 13, 1842. [Google Scholar] [CrossRef]
- Harris, P.; Lerner, E. Identification and quantification of within-burst dynamics in singly-labeled single-molecule fluorescence lifetime experiments. BioRxiv 2022. [Google Scholar] [CrossRef]
- Kou, M.; Qin, F.; Lv, W.; Zhang, X.; Wang, Y.; Zhao, H.; Zhang, Z. Oxygen-varying correlated fluorescence for determining the stern-volmer constant of porphyrin. J. Phys. Chem. Lett. 2022, 13, 2007–2011. [Google Scholar] [CrossRef] [PubMed]
- Juneau, A.; Hope, T.; Malenfant, J.; Mesko, M.; McNeill, J.; Frenette, M. Methods to predict potential reagents in iridium-based photoredox catalysis calibrated with stern–volmer quenching rate constants. ACS Catal. 2022, 12, 2348–2356. [Google Scholar] [CrossRef]
- Condict, L.; Kasapis, S. Critical issues encountered in the analysis of protein-phenolic binding interactions via fluorescence spectroscopy. Food Hydrocoll. 2021, 124, 107219. [Google Scholar] [CrossRef]
- Sun, X.-Z.; Li, J.; He, Q.; Xue, Y.; Bai, Y.; Yang, Y.; Wang, X.; Wang, S.; Li, R. Ferric ion detection mechanism of a dicarboxylic cellulose nanocrystal and a 7-amino-4-methylcoumarin based fluorescent chemosensor. RSC Adv. 2022, 12, 16798–16804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, T.; Li, Q.; Zhang, X.; Zhao, H.; Zheng, Y.; Qin, F.; Zhang, Z.; Sheng, T.; Tian, Y. Large-scale sensitivity adjustment for Gd-HMME room temperature phosphorescence oxygen sensing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 267, 120490. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Glazier, S. TNT sensor: Stern–volmer analysis of luminescence quenching of ruthenium bipyridine. J. Chem. Educ. 2021, 98, 2643–2648. [Google Scholar] [CrossRef]
- Zhang, J. Study on Fiber Optical Oxygen Sensor Based on Fluorescence Quenching. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2003. [Google Scholar]
- Deng, H.; Bai, Y.; Xiao, J.; Wu, Q. Precision estimate of fluorescence quenching based fiber optical oxygen sensor. Opt. Tech. 2015, 41, 124–127+131. [Google Scholar] [CrossRef]
- Parthasarathy, K. Communication in the Presence of Noise. Proc. IRE 2013, 61–92. [Google Scholar] [CrossRef]
- Rao, K.; Ahmed, N. Orthogonal Transforms for Digital Signal Processing. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, USA, 12–14 April 1976; IEEE: Piscataway, NJ, USA, 1976; pp. 136–140. [Google Scholar]
- Huang, X.; Wang, Z. Phase difference correcting spectrum method based on all-phase spectrum analysis. J. Electron. Inf. Technol. 2008, 30, 293–297. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Zhang, X.; Lin, X. All phase FFT analysis with phase measurement applications in electronic measurement. In Advances in Mechanical and Electronic Engineering; Jin, D., Lin, S., Eds.; Springer: Heidelberg/Berlin, Germany, 2012; pp. 463–469. [Google Scholar]
- Duan, H.M.; Qin, S.R.; Li, N. Review of correction methods for discrete spectrum. Vib. Shock. 2007, 26, 138–145. (In Chinese) [Google Scholar]
- Wang, M.; Zhang, X. Method for frequency measurement with ApFFT based on FPGA. In Proceedings of the 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 19–20 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1177–1180. [Google Scholar]
System Elements | Composition |
---|---|
Central processing module | Data acquisition module |
Algorithm processing module | |
Communication module | |
Signal generation module | AD9833 chip |
LED driver module | 3528 lamp beads |
LTC6256 operational amplifier | |
BC847BW transistor | |
Optical path component | Beamsplitter |
Glass ball beads | |
Filter | |
Optical fiber | |
Oxygen-sensitive layer | |
Photoelectric conversion module | Photoresist and photodiode |
Signal amplification module | MTI04CS operational amplifier |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, P.; Zhou, H.; Sun, H.; Sun, Q.; Griffiths, R. Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection. Sensors 2022, 22, 6753. https://doi.org/10.3390/s22186753
Xia P, Zhou H, Sun H, Sun Q, Griffiths R. Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection. Sensors. 2022; 22(18):6753. https://doi.org/10.3390/s22186753
Chicago/Turabian StyleXia, Pengkai, Haiyang Zhou, Haozhe Sun, Qingfeng Sun, and Rupert Griffiths. 2022. "Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection" Sensors 22, no. 18: 6753. https://doi.org/10.3390/s22186753
APA StyleXia, P., Zhou, H., Sun, H., Sun, Q., & Griffiths, R. (2022). Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection. Sensors, 22(18), 6753. https://doi.org/10.3390/s22186753