Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Sensor Parameters’ Optimization
3. Results
3.1. Sensor Linearity
3.2. Long-Term Sensor Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Yu, B.; Zhao, W.; Chen, W. A Review of Signal Enhancement and Noise Reduction Techniques for Tunable Diode Laser Absorption Spectroscopy. Appl. Spectrosc. Rev. 2014, 49, 666–691. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, G.; Li, J.; Yu, B. Applications of Absorption Spectroscopy Using Quantum Cascade Lasers. Appl. Spectrosc. 2014, 68, 1095–1107. [Google Scholar] [CrossRef]
- Jaworski, P. A Review of Antiresonant Hollow-Core Fiber-Assisted Spectroscopy of Gases. Sensors 2021, 21, 5640. [Google Scholar] [CrossRef]
- Asakawa, T.; Kanno, N.; Tonokura, K. Diode Laser Detection of Greenhouse Gases in the Near-Infrared Region by Wavelength Modulation Spectroscopy: Pressure Dependence of the Detection Sensitivity. Sensors 2010, 10, 4686–4699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrou, A.; Raybaut, M.; Godard, A.; Lefebvre, M. High-Resolution Photoacoustic and Direct Absorption Spectroscopy of Main Greenhouse Gases by Use of a Pulsed Entangled Cavity Doubly Resonant OPO. Appl. Phys. B 2009, 98, 217. [Google Scholar] [CrossRef]
- Boudon, V.; Champion, J.-P.; Gabard, T.; Pierre, G.; Loëte, M.; Wenger, C. Spectroscopic Tools for Remote Sensing of Greenhouse Gases CH4, CF4 and SF6. Environ. Chem. Lett. 2003, 1, 86–91. [Google Scholar] [CrossRef]
- Berden, G.; Peeters, R.; Meijer, G. Cavity Ring-down Spectroscopy: Experimental Schemes and Applications. Int. Rev. Phys. Chem. 2000, 19, 565–607. [Google Scholar] [CrossRef]
- Dudzik, G.; Krzempek, K.; Abramski, K.; Wysocki, G. Solid-State Laser Intra-Cavity Photothermal Gas Sensor. Sens. Actuators B Chem. 2021, 328, 129072. [Google Scholar] [CrossRef]
- Ma, Y.; Hong, Y.; Qiao, S.; Lang, Z.; Liu, X. H-Shaped Acoustic Micro-Resonator-Based Quartz-Enhanced Photoacoustic Spectroscopy. Opt. Lett. 2022, 47, 601–604. [Google Scholar] [CrossRef]
- Krzempek, K.; Jaworski, P.; Kozioł, P.; Belardi, W. Antiresonant Hollow Core Fiber-Assisted Photothermal Spectroscopy of Nitric Oxide at 5.26 Μm with Parts-per-Billion Sensitivity. Sens. Actuators B Chem. 2021, 345, 130374. [Google Scholar] [CrossRef]
- Swinehart, D.F. The Beer-Lambert Law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Yang, C.; Guan, Z.; Ling, Q.; Shao, J.; Chen, D. Spot Pattern Optimization of a Dense Multi-Pass Cell Using a Quasi-Variance Analysis Method. Opt. Commun. 2021, 490, 126901. [Google Scholar] [CrossRef]
- Hochman, A.; Leviatan, Y. Calculation of Confinement Losses in Photonic Crystal Fibers by Use of a Source-Model Technique. J. Opt. Soc. Am. B 2005, 22, 474–480. [Google Scholar] [CrossRef]
- Richter, D.; Fried, A.; Wert, B.P.; Walega, J.G.; Tittel, F.K. Development of a Tunable Mid-IR Difference Frequency Laser Source for Highly Sensitive Airborne Trace Gas Detection. Appl. Phys. B 2002, 75, 281–288. [Google Scholar] [CrossRef]
- Klingbeil, A.E.; Jeffries, J.B.; Hanson, R.K. Temperature-Dependent Mid-IR Absorption Spectra of Gaseous Hydrocarbons. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 407–420. [Google Scholar] [CrossRef]
- Hansen, T.P.; Broeng, J.; Jakobsen, C.; Vienne, G.; Simonsen, H.R.; Nielsen, M.D.; Skovgaard, P.M.W.; Folkenberg, J.R.; Bjarklev, A. Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling. J. Lightwave Technol. 2004, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Litchinitser, N.M.; Abeeluck, A.K.; Headley, C.; Eggleton, B.J. Antiresonant Reflecting Photonic Crystal Optical Waveguides. Opt. Lett. 2002, 27, 1592–1594. [Google Scholar] [CrossRef]
- Kolyadin, A.N.; Kosolapov, A.F.; Pryamikov, A.D.; Biriukov, A.S.; Plotnichenko, V.G.; Dianov, E.M. Light Transmission in Negative Curvature Hollow Core Fiber in Extremely High Material Loss Region. Opt. Express 2013, 21, 9514–9519. [Google Scholar] [CrossRef]
- Carter, R.M.; Yu, F.; Wadsworth, W.J.; Shephard, J.D.; Birks, T.; Knight, J.C.; Hand, D.P. Measurement of Resonant Bend Loss in Anti-Resonant Hollow Core Optical Fiber. Opt. Express 2017, 25, 20612–20621. [Google Scholar] [CrossRef]
- Yao, C.; Xiao, L.; Gao, S.; Wang, Y.; Wang, P.; Kan, R.; Jin, W.; Ren, W. Sub-Ppm CO Detection in a Sub-Meter-Long Hollow-Core Negative Curvature Fiber Using Absorption Spectroscopy at 2.3 Μm. Sens. Actuators B Chem. 2020, 303, 127238. [Google Scholar] [CrossRef]
- Krzempek, K. Part-per-Billion Level Photothermal Nitric Oxide Detection at 5.26 µm Using Antiresonant Hollow-Core Fiber-Based Heterodyne Interferometry. Opt. Express 2021, 29, 32568–32579. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, P.; Krzempek, K.; Kozioł, P.; Wu, D.; Yu, F.; Bojęś, P.; Dudzik, G.; Liao, M.; Knight, J.; Abramski, K. Sub Parts-per-Billion Detection of Ethane in a 30-Meters Long Mid-IR Antiresonant Hollow-Core Fiber. Opt. Laser Technol. 2022, 147, 107638. [Google Scholar] [CrossRef]
- PVI-5-1 × 1-TO39-NW-36. VIGO System—Innovative Infrared Detectors MCT, InAs, InAsSb. Available online: https://vigo.com.pl/en/products_en/pvi-5-1x1-to39-nw-36/ (accessed on 11 June 2022).
- Mitchell, B.; Weber, J.W.; Walter, D.; Macdonald, D.; Trupke, T. On the Method of Photoluminescence Spectral Intensity Ratio Imaging of Silicon Bricks: Advances and Limitations. J. Appl. Phys. 2012, 112, 063116. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.C. Comparison and Competition between MCT and QW Structure Material for Use in IR Detectors. Microelectron. J. 1994, 25, 713–739. [Google Scholar] [CrossRef]
- Goldberg, A.C.; Kennerly, S.W.; Little, J.W.; Pollehn, H.K.; Shafer, T.A.; Mears, C.L.; Schaake, H.F.; Winn, M.L.; Taylor, M.F.; Uppal, P.N. Comparison of HgCdTe and QWIP Dual-Band Focal Plane Arrays; Andresen, B.F., Fulop, G.F., Strojnik, M., Eds.; SPIE: Orlando, FL, USA, 10 October 2001; p. 532. [Google Scholar]
- Quartz. Wikipedia 2022. Available online: https://en.wikipedia.org/wiki/Quartz_(disambiguation) (accessed on 11 June 2022).
- Alder, J.F.; McCallum, J.J. Piezoelectric Crystals for Mass and Chemical Measurements. A Review. Analyst 1983, 108, 1169–1189. [Google Scholar] [CrossRef]
- Friedt, J.-M.; Carry, É. Introduction to the Quartz Tuning Fork. Am. J. Phys. 2007, 75, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Starecki, T.; Wieczorek, P.Z. A High Sensitivity Preamplifier for Quartz Tuning Forks in QEPAS (Quartz Enhanced PhotoAcoustic Spectroscopy) Applications. Sensors 2017, 17, 2528. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Dong, L.; Yin, X.; Sampaolo, A.; Patimisco, P.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Spagnolo, V.; et al. Atmospheric CH4 Measurement near a Landfill Using an ICL-Based QEPAS Sensor with V-T Relaxation Self-Calibration. Sens. Actuators B Chem. 2019, 297, 126753. [Google Scholar] [CrossRef]
- Duquesnoy, M.; Aoust, G.; Melkonian, J.-M.; Levy, R.; Raybaut, M.; Godard, A. QEPAS Sensor Using a Radial Resonator. Appl. Phys. B 2021, 127, 150. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Quartz-Tuning-Fork Enhanced Photothermal Spectroscopy for Ultra-High Sensitive Trace Gas Detection. Opt. Express 2018, 26, 32103–32110. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Ma, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Ultra-High Sensitive Light-Induced Thermoelastic Spectroscopy Sensor with a High Q-Factor Quartz Tuning Fork and a Multipass Cell. Opt. Lett. 2019, 44, 1904–1907. [Google Scholar] [CrossRef] [PubMed]
- Silica Glass (SiO2) Optical Material. Available online: https://www.crystran.co.uk/optical-materials/silica-glass-sio2 (accessed on 22 February 2022).
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-Free Wavelength-Modulation Spectroscopy for Measurements of Gas Temperature and Concentration in Harsh Environments. Appl. Opt. 2009, 48, 5546–5560. [Google Scholar] [CrossRef]
- Jaworski, P.; Kozioł, P.; Krzempek, K.; Wu, D.; Yu, F.; Bojęś, P.; Dudzik, G.; Liao, M.; Abramski, K.; Knight, J. Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions. Sensors 2020, 20, 3813. [Google Scholar] [CrossRef] [PubMed]
- Bojęś, P.; Jaworski, P.; Krzempek, K.; Malecha, Z.; Yu, F.; Wu, D.; Kozioł, P.; Dudzik, G.; Liao, M.; Abramski, K. Experimental and Numerical Analysis of Gas Flow in Nodeless Antiresonant Hollow-Core Fibers for Optimization of Laser Gas Spectroscopy Sensors. Opt. Laser Technol. 2022, 152, 108157. [Google Scholar] [CrossRef]
- Masum, B.M.; Aminossadati, S.M.; Kizil, M.S.; Leonardi, C.R. Numerical and Experimental Investigations of Pressure-Driven Gas Flow in Hollow-Core Photonic Crystal Fibers. Appl. Opt. 2019, 58, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Lang, Z.; Qiao, S.; Ma, Y. Acoustic Microresonator Based In-Plane Quartz-Enhanced Photoacoustic Spectroscopy Sensor with a Line Interaction Mode. Opt. Lett. 2022, 47, 1295–1298. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, C.; Zhang, M.; Zheng, K.; Zheng, J.; Song, Z.; Li, X.; Zhang, Y.; Wang, Y.; Tittel, F.K. Long-Distance in-Situ Methane Detection Using near-Infrared Light-Induced Thermo-Elastic Spectroscopy. Photoacoustics 2021, 21, 100230. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, C.; Zhang, Y.; Zheng, J.; Wang, Y.; Tittel, F.K. Compact All-Fiber Light-Induced Thermoelastic Spectroscopy for Gas Sensing. Opt. Lett. 2020, 45, 1894–1897. [Google Scholar] [CrossRef]
- Yi, J.W.; Shih, W.Y.; Mutharasan, R.; Shih, W.-H. In Situ Cell Detection Using Piezoelectric Lead Zirconate Titanate-Stainless Steel Cantilevers. J. Appl. Phys. 2003, 93, 619–625. [Google Scholar] [CrossRef]
- Lang, Z.; Qiao, S.; He, Y.; Ma, Y. Quartz Tuning Fork-Based Demodulation of an Acoustic Signal Induced by Photo-Thermo-Elastic Energy Conversion. Photoacoustics 2021, 22, 100272. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, C.; Zheng, C.; Hu, L.; Guan, G.; Ma, Y.; Song, F.; Zhang, Y.; Zhang, Y.; Wang, Y.; et al. Light-Induced off-Axis Cavity-Enhanced Thermoelastic Spectroscopy in the near-Infrared for Trace Gas Sensing. Opt. Express 2021, 29, 23213–23224. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hu, Y.; Qiao, S.; He, Y.; Tittel, F.K. Trace Gas Sensing Based on Multi-Quartz-Enhanced Photothermal Spectroscopy. Photoacoustics 2020, 20, 100206. [Google Scholar] [CrossRef] [PubMed]
- Werle, P.; Mücke, R.; Slemr, F. The Limits of Signal Averaging in Atmospheric Trace-Gas Monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS). Appl. Phys. B 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, H.; Dong, L.; Huang, Z.; Gu, X.; Tang, J.; Dong, L.; Zhu, W.; Yu, J.; Chen, Z. Quartz-Enhanced Photothermal-Acoustic Spectroscopy for Trace Gas Analysis. Appl. Sci. 2019, 9, 4021. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, Y. Sensitive Carbon Monoxide Detection Based on Light-Induced Thermoelastic Spectroscopy with a Fiber-Coupled Multipass Cell. Chin. Opt. Lett. 2022, 20, 031201. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, S.; Ma, Y. Highly Sensitive Methane Detection Based on Light-Induced Thermoelastic Spectroscopy with a 2.33 µm Diode Laser and Adaptive Savitzky-Golay Filtering. Opt. Express 2022, 30, 1304–1313. [Google Scholar] [CrossRef]
- Goel, C.; Li, H.; Hassan, M.R.A.; Chang, W.; Yoo, S. Anti-Resonant Hollow-Core Fiber Fusion Spliced to Laser Gain Fiber for High-Power Beam Delivery. Opt. Lett. 2021, 46, 4374–4377. [Google Scholar] [CrossRef]
- Kozioł, P.; Jaworski, P.; Krzempek, K.; Hoppe, V.; Dudzik, G.; Yu, F.; Wu, D.; Liao, M.; Knight, J.; Abramski, K. Fabrication of Microchannels in a Nodeless Antiresonant Hollow-Core Fiber Using Femtosecond Laser Pulses. Sensors 2021, 21, 7591. [Google Scholar] [CrossRef]
Absorp. Cell | Gas | Integ. Time | MDL | NNEA (W cm−1 Hz−1/2) | Ref. |
---|---|---|---|---|---|
MPC 10.1 m | CO | 60 ms | 470 ppbv | 2.0 × 10−7 | [34] |
Single-pass 0.2 m | C2H2 | 200 s | 190 ppbv | − | [46] |
MPC 40 m | CO | 200 s | 9 ppmv | 1.15 × 10−7 | [49] |
MPC 10.1 m | CH4 | 100 s | 400 ppbv | − | [50] |
Single-pass 2 m | H2O | − | 12 ppmv | 8.4 × 10−7 | [48] |
ARHCF (0.95 m) | CH4 | 100 s | 220 ppbv | 2.04 × 10−11 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojęś, P.; Pokryszka, P.; Jaworski, P.; Yu, F.; Wu, D.; Krzempek, K. Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber. Sensors 2022, 22, 5504. https://doi.org/10.3390/s22155504
Bojęś P, Pokryszka P, Jaworski P, Yu F, Wu D, Krzempek K. Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber. Sensors. 2022; 22(15):5504. https://doi.org/10.3390/s22155504
Chicago/Turabian StyleBojęś, Piotr, Piotr Pokryszka, Piotr Jaworski, Fei Yu, Dakun Wu, and Karol Krzempek. 2022. "Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber" Sensors 22, no. 15: 5504. https://doi.org/10.3390/s22155504
APA StyleBojęś, P., Pokryszka, P., Jaworski, P., Yu, F., Wu, D., & Krzempek, K. (2022). Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber. Sensors, 22(15), 5504. https://doi.org/10.3390/s22155504