Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Kinetics of Local Sweat Rate
3.2. Regional Difference in Sweat Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiorek, A.; Parrilla, M.; Cuartero, M.; Crespo, G.A. Epidermal Patch with Glucose Biosensor: pH and Temperature Correction toward More Accurate Sweat Analysis during Sport Practice. Anal. Chem. 2020, 92, 10153–10161. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.; Zamarayeva, A.; Pister, V.I.; Yamamoto, N.A.D.; Arias, A.C. Printed, Flexible Lactate Sensors: Design Considerations Before Performing On-Body Measurements. Sci. Rep. 2019, 9, 13720. [Google Scholar] [CrossRef] [PubMed]
- Karpova, E.V.; Shcherbacheva, E.V.; Galushin, A.A.; Vokhmyanina, D.V.; Karyakina, E.E.; Karyakin, A.A. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal. Chem. 2019, 91, 3778–3783. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Bandodkar, A.J.; Valdés-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef]
- Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, eaar2904. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature 2019, 6, 211–259. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.B.; Wolfe, A.S. Physiological Mechanisms Determining Eccrine Sweat Composition. Eur. J. Appl. Physiol. 2020, 120, 719–752. [Google Scholar] [CrossRef] [Green Version]
- Seki, Y.; Nakashima, D.; Shiraishi, Y.; Ryuzaki, T.; Ikura, H.; Miura, K.; Suzuki, M.; Watanabe, T.; Nagura, T.; Matsumato, M.; et al. A novel device for detecting anaerobic threshold using sweat lactate during exercise. Sci. Rep. 2021, 11, 4929. [Google Scholar] [CrossRef]
- Katsumata, Y.; Sano, M.; Okawara, H.; Sawada, T.; Nakashima, D.; Ichihara, G.; Fukuda, K.; Sato, K.; Kobayashi, E. Laminar flow ventilation system to prevent airborne infection during exercise in the COVID-19 crisis: A single-center observational study. PLoS ONE 2021, 16, e0257549. [Google Scholar] [CrossRef]
- Okawara, H.; Sawada, T.; Nakashima, D.; Maeda, Y.; Minoji, S.; Morisue, T.; Katsumata, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T. Kinetic changes in sweat lactate following fatigue during constant workload exercise. Physiol. Rep. 2022, 10, e15169. [Google Scholar] [CrossRef] [PubMed]
- Ament, W.; Huizenga, J.R.; Mook, G.A.; Gips, C.H.; Verkerke, C.J. Lactate and Ammonia Concentration in Blood and Sweat During Incremental Cycle Ergometer Exercise. Endoscopy 1997, 18, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Buono, M.J.; Lee, N.V.L.; Miller, P.W. The relationship between exercise intensity and the sweat lactate excretion rate. J. Physiol. Sci. 2009, 60, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B. Sweating Rate and Sweat Sodium Concentration in Athletes: A Review of Methodology and Intra/Interindividual Variability. Sports Med. 2017, 47, 111–112. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, A.; Salvo, P.; Mastorci, F.; Catapano, G.; Sordi, L.; Piaggi, P.; Di Francesco, F. Sweat rate monitoring during maximal exercise in healthy soccer players: A close relationship with anaerobic threshold. Ann. Sports Med. Res. 2015, 2, 9. [Google Scholar]
- Davis, J.K.; Baker, L.B.; Barnes, K.; Ungaro, C.; Stofan, J. Thermoregulation, Fluid Balance, and Sweat Losses in American Football Players. Sports Med. 2016, 46, 1391–1405. [Google Scholar] [CrossRef]
- Derbyshire, P.J.; Barr, H.; Davis, F.; Higson, S.P.J. Lactate in human sweat: A critical review of research to the present day. J. Physiol. Sci. 2012, 62, 429–440. [Google Scholar] [CrossRef]
- Grucza, R.; Hänninen, O. Importance of dynamics of sweating in men during exercise. Acta Physiol. Pol. 1990, 41, 65–75. [Google Scholar]
- Mountjoy, M.; Alonso, J.-M.; Bergeron, M.F.; Dvorak, J.; Miller, S.; Migliorini, S.; Singh, D.G. Hyperthermic-related challenges in aquatics, athletics, football, tennis and triathlon: Table 1. Br. J. Sports Med. 2012, 46, 800–804. [Google Scholar] [CrossRef]
- Hirakawa, N.; Higashimoto, I.; Takamori, A.; Tsukamoto, E.; Uemura, Y. The impact of endoscopic thoracic sympathectomy on sudomotor function in patients with palmar hyperhidrosis. Clin. Auton. Res. 2020, 31, 225–230. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Cheuvront, S.N.; Elliott, L.D.; Ely, B.; Sawka, M.N. Biological and analytical variation of the human sweating response: Implications for study design and analysis. Am. J. Physiol. Integr. Comp. Physiol. 2012, 302, R252–R258. [Google Scholar] [CrossRef] [PubMed]
- Pöchmüller, M.; Schwingshackl, L.; Colombani, P.C.; Hoffmann, G. A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. J. Int. Soc. Sports Nutr. 2016, 13, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiles, J.D.; Bird, S.R.; Hopkins, J.; Riley, M. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. Br. J. Sports Med. 1992, 26, 116–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaafar, H.; Rouis, M.; Coudrat, L.; Attiogbé, E.; Vandewalle, H.; Driss, T. Effects of Load on Wingate Test Performances and Reliability. J. Strength Cond. Res. 2014, 28, 3462–3468. [Google Scholar] [CrossRef]
- Sassi, A.; Marcora, S.M.; Rampinini, E.; Mognoni, P.; Impellizzeri, F.M. Prediction of time to exhaustion from blood lactate response during submaximal exercise in competitive cyclists. Eur. J. Appl. Physiol. 2006, 97, 174–180. [Google Scholar] [CrossRef]
- Kondo, N.; Nakadome, M.; Zhang, K.; Shiojiri, T.; Shibasaki, M.; Hirata, K.; Iwata, A. The effect of change in skin temperature due to evaporative cooling on sweating response during exercise. Int. J. Biometeorol. 1997, 40, 99–102. [Google Scholar] [CrossRef]
- Takeuchi, J.; Yamanishi, K. A unifying framework for detecting outliers and change points from time series. IEEE Trans. Knowl. Data Eng. 2006, 18, 482–492. [Google Scholar] [CrossRef]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE: Los Angeles, CA, USA, 2018; pp. 303–304, 474–476. [Google Scholar]
- Kondo, N.; Takano, S.; Aoki, K.; Shibasaki, M.; Tominaga, H.; Inoue, Y. Regional differences in the effect of exercise intensity on thermoregulatory sweating and cutaneous vasodilation. Acta Physiol. Scand. 1998, 164, 71–78. [Google Scholar] [CrossRef]
- Kondo, N.; Nishiyasu, T.; Nishiyasu, M.; Ikegami, H. Differences in regional sweating responses during exercise between athletes trained on land and in water. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 67–71. [Google Scholar] [CrossRef]
- Gagnon, D.; Jay, O.; Kenny, G.P. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J. Physiol. 2013, 591, 2925–2935. [Google Scholar] [CrossRef]
- Ravanelli, N.; Imbeault, P.; Jay, O. Steady-state sweating during exercise is determined by the evaporative requirement for heat balance independently of absolute core and skin temperatures. J. Physiol. 2020, 598, 2607–2619. [Google Scholar] [CrossRef] [PubMed]
- Van Hoovels, K.; Xuan, X.; Cuartero, M.; Gijssel, M.; Swarén, M.; Crespo, G.A. Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology? ACS Sensors 2021, 6, 3496–3508. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Kondo, N.; Shibasaki, M.; Aoki, K.; Inoue, Y.; Iwata, A. The Influence of Work Loads on Regional Differences in Sweating Rates. Jpn. J. Physiol. 1996, 46, 183–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toma, K.; Suzuki, S.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. External ears for non-invasive and stable monitoring of volatile organic compounds in human blood. Sci. Rep. 2021, 11, 10415. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.A.; Caldwell, A.R.; Butts, C.L.; Robinson, F.B.; Reynebeau, H.C.; Kavouras, S.A.; McDermott, B.P.; Washington, T.A.; Turner, R.C.; Ganio, M.S. Effect of hypohydration on thermoregulatory responses in men with low and high body fat exercising in the heat. J. Appl. Physiol. 2017, 122, 142–152. [Google Scholar] [CrossRef] [Green Version]
Variable | n = 18 |
---|---|
Age (yr) | 20.6 (0.9) |
Height (m) | 171.6 (5.8) |
Weight (kg) | 63.3 (9.1) |
BMI (%) | 21.4 (2.0) |
Body fat ratio (%) | 16.0 (4.3) |
Lean body mass (kg) | 52.9 (5.8) |
Muscle mass (kg) | 50.2 (5.5) |
Total body water (kg) | 36.7 (4.6) |
Body water (%) | 57.7 (4.6) |
TE (s) | 2080.8 (1271.1) |
Pedaling load (W) | 164.1 (39.5) |
Forehead | Upper Arm | r | p-Value | |
---|---|---|---|---|
Time to point (s) | ||||
Start to OS | 270.9 (92.0) | 321.5 (146.1) | 0.52 § | 0.06 |
OS to FP1 | 266.6 (201.4) | 299.6 (217.9) | 0.52 § | 0.06 |
FP1 to FP2 | 662.0 (519.0) | 756.4 (527.3) | 0.26 § | 0.35 |
FP2 to exhaustion | 1173.6 (989.6) | 868.4 (794.2) | 0.53 § | 0.06 |
Mean SR (mg/cm2/min) | ||||
OS to FP1 | 0.66 (0.41) *,† | 0.37 (0.28) *,† | 0.73 § | <0.01 |
FP1 to FP2 | 1.85 (0.60) † | 0.99 (0.47) † | 0.88 § | <0.01 |
FP2 to exhaustion | 2.37 (0.65) | 1.29 (0.48) | 0.88 § | <0.01 |
Total | 1.98 (0.54) | 0.98 (0.37) | 0.95 ‖ | <0.01 |
Peak SR (mg/cm2/min) | ||||
OS to FP1 | 1.35 (0.59) *,† | 0.73 (0.48) *,† | 0.80 § | <0.01 |
FP1 to FP2 | 2.33 (0.70) ‡ | 1.32 (0.49) † | 0.91 ‖ | <0.01 |
FP2 to exhaustion | 2.72 (0.72) | 1.51 (0.48) | 0.93 ‖ | <0.01 |
Total | 2.72 (0.72) | 1.50 (0.48) | 0.93 ‖ | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okawara, H.; Sawada, T.; Nakashima, D.; Maeda, Y.; Minoji, S.; Morisue, T.; Katsumata, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T. Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System. Sensors 2022, 22, 5473. https://doi.org/10.3390/s22155473
Okawara H, Sawada T, Nakashima D, Maeda Y, Minoji S, Morisue T, Katsumata Y, Matsumoto M, Nakamura M, Nagura T. Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System. Sensors. 2022; 22(15):5473. https://doi.org/10.3390/s22155473
Chicago/Turabian StyleOkawara, Hiroki, Tomonori Sawada, Daisuke Nakashima, Yuta Maeda, Shunsuke Minoji, Takashi Morisue, Yoshinori Katsumata, Morio Matsumoto, Masaya Nakamura, and Takeo Nagura. 2022. "Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System" Sensors 22, no. 15: 5473. https://doi.org/10.3390/s22155473