Morphological Fabrication of Equilibrium and Auditory Sensors through Electrolytic Polymerization on Hybrid Fluid Rubber (HF Rubber) for Smart Materials of Robotics
Abstract
:1. Introduction
2. Anatomical Background
3. Materials of Mimicked Receptors
4. Methods of Mimicry
5. Principle of HF Rubber Receptor
6. Experimental Devices
7. Equilibrium Performance
7.1. Methods
7.2. Results and Discussion
8. Acoustic Performance
8.1. Methods
8.2. Results and Discussion
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmitt, F.; Piccin, O.; Barbe, L.; Bayle, B. Soft robots manufacturing: A review. Front. Robot. AI 2018, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Pu, X.; Chen, J.; Meng, Y.; Yeh, M.; Liu, G.; Tang, Q.; Chen, B.; Liu, D.; Qi, S.; et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, B.; Shah, D.; Li, J.; Thuruthel, T.G.; Park, Y.L.; Lida, F.; Bao, Z.; Bottiglio, R.K.; Tolley, M.T. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 2020, 5, eaaz9239. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Tai, G.; Liu, Y.; Liu, R.; Liang, X.; Wu, Z.; Wu, Z. Borophene pressure sensing for electronic skin and human-machine interface. Nano Energy 2022, 97, 107189. [Google Scholar] [CrossRef]
- Becker, C.; Bao, B.; Karnaushenko, D.D.; Bandari, V.K.; Rivkin, B.; Li, Z.; Faghih, M.; Karnaushenko, D.; Scmidt, O.G. A new dimension for magnetosenstive e-skin: Active matrix integrated micro-origami sensor arrays. Nat. Commun. 2022, 13, 2121. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, D.; Zhao, L.; Wang, X.; Han, W.; Wang, L. Chemically modified silk fibroin hydrogel for environment-stable electronic skin. Sens. Actuators Rep. 2022, 4, 100089. [Google Scholar] [CrossRef]
- Yang, C.H.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [Green Version]
- Chotos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef]
- Azadi, S.; Peng, S.; Moshizi, S.A.; Asadnia, M.; Xu, J.; Park, I.; Wang, C.H.; Wu, S. Biocompatible and highly stretchable PVA/AgNWs hydrogel strain sensors for human motion detection. Adv. Mater. Technol. 2020, 5, 2000426. [Google Scholar] [CrossRef]
- Hosoda, K.; Tada, Y.; Asada, M. Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robot. Auton. Syst. 2006, 54, 104–109. [Google Scholar] [CrossRef]
- Shimada, K.; Saga, N. Development of a hybrid piezo natural rubber piezoelectricity and piezoresistivity sensor with magnetic clusters made by electric and magnetic field assistance and filling with magnetic compound fluid. Sensors 2017, 17, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.L.; Guo, Z.H.; Pu, X.; Wang, Z.L. Ultralight ionic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 2022, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kang, D.H.; Chae, H.; Ghosh, S.K.; Jeong, C.; Park, Y.; Cho, S.; Lee, Y.; Kim, J.; Ko, Y.; et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci. Adv. 2022, 8, eabj9220. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zhao, X.; Tan, M.C.; Zhao, R. Artificial perception built on memristive system: Visual, auditory, and tactile sensations. Adv. Intell. Syst. 2020, 2, 1900118. [Google Scholar] [CrossRef]
- Svechtarova, M.I.; Buzzacchera, I.; Tobes, B.J.; Lauko, J.; Anton, N.; Wilson, C.J. Sensor devices inspired by the five sensors: A review. Electroanalysis 2016, 28, 1201–1241. [Google Scholar] [CrossRef] [Green Version]
- Shimada, K.; Saga, N. Mechanical enhancement of sensitivity in natural rubber using electrolytic polymerization aided by a magnetic field and MCF for application in haptic sensors. Sensors 2016, 16, 1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, K. Elastic MCF rubber with photovoltaics and sensing for use as artificial or hybrid skin (H-Skin): 1st report on dry-type solar cell rubber with piezoelectricity for compressive sensing. Sensors 2018, 18, 1841. [Google Scholar] [CrossRef] [Green Version]
- Shimada, K.; Ikeda, R.; Kikura, H.; Takahashi, H. Morphological fabrication of rubber cutaneous receptors embedded in a stretchable skin-mimicking human tissue by the utilization of hybrid fluid. Sensors 2021, 21, 6834. [Google Scholar] [CrossRef]
- Shimada, K.; Ikeda, R.; Kikura, H.; Takahashi, H. Development of novel magnetic responsive intelligent fluid, hybrid fluid (HF), for production of soft and tactile rubber. World J. Mech. 2021, 11, 187–203. [Google Scholar] [CrossRef]
- Shimada, K.; Kikura, H.; Takahashi, H.; Ikeda, R. Novel adhesion technique using metallic or non-metallic hydrous oxide of metal complexes involving magnetic compound fluid rubber under electrolytic polymerization and magnetic field for producing sensors. Sensors 2019, 19, 689. [Google Scholar] [CrossRef] [Green Version]
- Blandin, A.A.; Bernardeschi, I.; Beccai, L. Biomechanics in soft mechanical sensing: From natural case studies to the artificial world. Biomimetics 2018, 3, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, B.S.; Tarazaga, P.A. Artificial hair cells inspired by active hair bundle motility. J. Intel. Mater. Syst. Struct. 2017, 28, 1816–1831. [Google Scholar] [CrossRef]
- Kottapalli, A.G.P.; Bora, M.; Kanhere, E.; Asadnia, M.; Miao, J.; Triantafyllou, M.S. Cupula-inspired hyaluronic acid-based hydrogel encapsulation to form biomimetic MEMS flow sensors. Sensors 2017, 17, 1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadria, M.; Kottapalli, A.G.P.; Warkiani, M.E.; Miao, J.M.; Triantafyllou, M.S. Engineering miniaturized hair cell sensors for auditory system. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 1173–1176. [Google Scholar]
- Asadnia, M.; Kottapalli, A.G.P.; Karavitaki, K.D.; Warkiani, M.E.; Miao, J.; Corey, D.O.; Triantafyllou, M. From biological cilia to artificial flow sensors: Biomimetic soft polymer nanosensors with high sensing performance. Nat. Sci. Rep. 2016, 6, 32955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.H.; Ma, J.H.; Chung, E.; Choi, H.; Bok, J.; Cheon, J. Magnetic force nanoprobe for direct observation of audio frequency tonotopy of hair cells. Nano Lett. 2016, 16, 3885–3891. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Su, Y.; Jing, Q.; Li, Z.; Yi, F.; Wen, X.; Wnag, Z.; Wnag, Z.L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2018, 27, 1316–1326. [Google Scholar] [CrossRef]
- Rizzi, F.; Qualtieri, A.; Dattoma, T.; Epifani, G.; Vittorio, M.D. Biomimetics of underwater hair cell sensing. Microelectron. Eng. 2015, 132, 90–97. [Google Scholar] [CrossRef]
- Qualtieri, A.; Rizzi, F.; Epifani, G.; Ernits, A.; Kruusmaa, M.; Vittorio, M.D. Parylene-coated bioinspired artificial hair cell for liquid flow sensing. Microelectron. Eng. 2012, 98, 516–519. [Google Scholar] [CrossRef]
- Joyce, B.S.; Tarazaga, P.A. Developing an active artificial hair cell using nonlinear feedback control. Smart Mater. Struct. 2015, 24, 094004. [Google Scholar] [CrossRef]
- Joyce, B.S.; Tarazaga, P.A. A study of active artificial hair cell models inspired by outer hair cell somatic motility. J. Intel. Mater. Syst. Struct. 2017, 28, 811–823. [Google Scholar] [CrossRef]
- Lee, H.S.; Chung, J.; Hwang, G.T.; Jeong, C.K.; Jung, Y.; Kwak, J.H.; Kang, H.; Byun, M.; Kim, W.D.; Hur, S.; et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 2014, 24, 6914–6921. [Google Scholar] [CrossRef]
- Inaoka, T.; Shintaku, H.; Nakagawa, T.; Kawano, S.; Ogita, H.; Sakamoto, T.; Hamanishi, S.; Wada, H.; Ito, J. Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc. Natl. Acad. Sci. USA 2011, 108, 18390–18395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shintaku, H.; Nakagawa, T.; Kitagawa, D.; Tanujaya, H.; Kawano, S.; Ito, J. Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Sens. Actuators A Phys. 2010, 158, 183–192. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.; Levy, M.; Kao, A.; Noh, S.; Bozovic, D.; Cheon, J. Magnetic nanoparticles for ultrafast mechanical control of inner ear hair cells. ACS Nano 2014, 8, 6590–6598. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Molzon, A.; Lee, J.H.; Kim, J.; Cheon, J.; Bozovic, D. High-order synchronization of hair cell bundles. Sci. Rep. 2016, 6, 39116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnnoor, M.S.; Jiang, Z.; James, T.; Kong, Y.L.; Malatesta, K.A.; Soboyejo, W.O.; Verma, N.; Gracias, D.H.; McAlpine, M.C. 3D printed bionic ears. Nano Lett. 2013, 13, 2634–2639. [Google Scholar] [CrossRef] [Green Version]
- Moshizi, S.A.; Azadi, S.; Belford, A.; Wu, S.; Han, Z.J.; Asadnia, M. Using advanced 2D materials to closely mimic vestibular hair cell sensors. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; pp. 739–742. [Google Scholar]
- Moshizi, S.A.; Azadi, S.; Belford, A.; Razmjou, A.; Wu, S.; Han, Z.J.; Asadnia, M. Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett. 2020, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Raoufi, M.A.; Moshizi, S.A.; Razmjou, A.; Wu, S.; Warkiani, M.E.; Asadnia, M. Development of a biomimetic semicircular canal with MEMS sensors to restore balance. IEEE Sens. J. 2019, 19, 11675–11686. [Google Scholar] [CrossRef]
- Ando, B.; Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Sparti, L.; Strazzeri, S. A bio-inspired device to detect equilibrium variations using IPMCs and ferrofluids. Sens. Actuators A Phys. 2008, 144, 242–250. [Google Scholar] [CrossRef]
- Vikas, V.; Crane, C. Bioinspired dynamic inclination measurement using inertial sensors. Bioinspir. Biomim. 2015, 10, 036003. [Google Scholar] [CrossRef] [PubMed]
- Luczak, S.; Ekwinska, M. Electric-contact tilt sensors: A review. Sensors 2021, 21, 97. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Moradi, H.; Pastras, C.J.; Moshizi, S.A.; Wu, S.; Asadnia, M. Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites. Appl. Mater. Interfaces 2021, 13, 44904–44915. [Google Scholar] [CrossRef] [PubMed]
HF Rubber 1 (For Hair Cell) | HF Rubber 2 (For Insulator as Condenser) | HF Rubber 3 (For Outer Cover) | HF Rubber 4 (For Adhesive) | ||
---|---|---|---|---|---|
Ingredients | Water | 3 g | 3 g | 1 g | 1 g |
Sodium tungstate (VI) dehydrate (Na2WO4·2H2O, Fujifilm Wako Chemical Co., Ltd., Osaka, Japan) | 0.5 g | 0.5 g | - | 0.5 g | |
TiO2 (Anataze type, Fujifilm Wako Chemical Co., Ltd., Osaka, Japan) | 0.5 g | 0.5 g | 0.5 g | 0.5 g | |
HF | 1 g | 1 g | 1 g | 1 g | |
NR-latex (Ulacol; Rejitex Co., Ltd., Atsugi, Japan) | 3 g | 3 g | 3 g | 3 g | |
CR-latex (671A; Showa Denko Co., Ltd., Tokyo, Japan) | 3 g | 3 g | 3 g | 3 g | |
Carbonyl Ni powder (No. 123, Yamaishi Co., Ltd., Noda, Japan) | 3 g | 3 g | 3 g | 3 g | |
Electrolytic polymerization conditions | 20 V, 2.7 A | 10 V, 2.7 A, 180 mT | 6 V, 2.7 A, 180 mT | 8 V, 2.7 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, K. Morphological Fabrication of Equilibrium and Auditory Sensors through Electrolytic Polymerization on Hybrid Fluid Rubber (HF Rubber) for Smart Materials of Robotics. Sensors 2022, 22, 5447. https://doi.org/10.3390/s22145447
Shimada K. Morphological Fabrication of Equilibrium and Auditory Sensors through Electrolytic Polymerization on Hybrid Fluid Rubber (HF Rubber) for Smart Materials of Robotics. Sensors. 2022; 22(14):5447. https://doi.org/10.3390/s22145447
Chicago/Turabian StyleShimada, Kunio. 2022. "Morphological Fabrication of Equilibrium and Auditory Sensors through Electrolytic Polymerization on Hybrid Fluid Rubber (HF Rubber) for Smart Materials of Robotics" Sensors 22, no. 14: 5447. https://doi.org/10.3390/s22145447
APA StyleShimada, K. (2022). Morphological Fabrication of Equilibrium and Auditory Sensors through Electrolytic Polymerization on Hybrid Fluid Rubber (HF Rubber) for Smart Materials of Robotics. Sensors, 22(14), 5447. https://doi.org/10.3390/s22145447