Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator
Abstract
:1. Introduction
2. Overview of VDGA
3. Proposed Mixed-Mode Universal Biquadratic Filter
- ➣
- VM universal biquadratic filter: With iin = 0, all the five general voltage-mode biquadratic filter functions for this three-input two-output universal filter can be achieved as follows.
- With vin = vi3 (input voltage) and vi1 = vi2 = 0 (grounded), the following LP and BP filter responses are obtained from vo1 and vo2, respectively:and
- With vin = vi2 and vi1 = vi3 = 0, the HP response is obtained from vo2, as given by:
- With vin = vi1 = vi2, and vi3 = 0, the BS response is obtained from vo2, as given by:
- With vin = vi1 = vi2 = −vi3, the AP response is also obtained from vo2, as given by:
- ➣
- CM universal biquadratic filter: The proposed circuit in Figure 3 can be changed into a CM universal biquad with vi1 = vi2 = vi3 = 0. The five generic current-mode biquad transfer functions realized by this configuration are expressed as follows.andwhere the passband gain of the BP response is equal to gmAR. Furthermore, the BS response may be realized by simply adding the currents io1 and io3 to realize the following current transfer function:
- ➣
- TAM universal biquadratic filter: With vin = vi3, vi1 = vi2 = 0, and iin = 0, the TAM filter functions are:and
- ➣
- TIM universal biquadratic filter: According to Figure 3, if vi1 = vi2 = vi3 = 0, the configuration is now operating in TIM universal filter. In this case, the two following TIM responses at voltage outputs vo1 and vo2 can simultaneously be obtained as:and
4. Proposed Dual-Mode Quadrature Oscillator
5. Non-Ideal Analyses
5.1. Effect of Finite Tracking Errors
5.2. Effect of Parasitics
6. Simulation Results
6.1. Simulation Verifications of the Proposed Mixed-Mode Universal Filter
6.2. Simulation Verifications of the Proposed Dual-Mode Quadrature Oscillator
7. Experimental Results
7.1. Experimental Verifications of the Proposed Mixed-Mode Universal Filter
7.2. Experimental Verifications of the Proposed Dual-Mode Quadrature Oscillator
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Symbols and Nomenclatures
| VDGA | voltage differencing gain amplifier |
| VM | voltage-mode |
| CM | current-mode |
| TAM | trans-admittance-mode |
| TIM | trans-impedance-mode |
| LP | low-pass |
| BP | band-pass |
| HP | high-pass |
| BS | band-stop |
| AP | all-pass |
| MUBF | mixed-mode universal biquadratic filter |
| QO | quadrature oscillator |
| DMQO | dual-mode QO |
| OC | oscillation condition |
| OF | oscillation frequency |
| gm | transconductance gain of the VDGA |
| β | voltage transfer gain of the VDGA |
| µ | effective channel electronic mobility |
| Cox | gate-oxide capacitance per unit area |
| W | effective channel width |
| L | effective channel length |
| TV | transfer function of voltage-mode filter |
| TI | transfer function of current-mode filter |
| TY | transfer function of trans-admittance-mode filter |
| TZ | transfer function of trans-impedance-mode filter |
| ωo | natural angular frequency of biquadratic filter |
| fo | natural frequency of biquadratic filter |
| Q | quality factor of biquadratic filter |
| ωosc | natural angular frequency of oscillator |
| fosc | frequency of oscillator |
| ej90° | Euler’s formula shows a 90° phase difference between two signals |
| ej180° | Euler’s formula shows a 180° phase difference between two signals |
| α | non-ideal transconductance gain |
| δ | non-ideal voltage transfer gain |
| εα | tracking error of transconductance gain |
| εδ | tracking error of voltage transfer gain |
| dBV | voltage decibel |
| dBA | ampere decibel |
| dBS | siemens decibel |
| dBΩ | Ohm decibel |
| dBm | mili decibel |
| dBµ | micro decibel |
| dBc | decibels relative to the carrier |
| THD | total harmonic distortion |
| SFDR | spurious-free dynamic range |
References
- Abuelma’atti, M.T. A novel mixed-mode current-controlled current-conveyor-based filter. Act. Passiv. Electron. Compon. 2003, 26, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.S.; Senani, R. New voltage-mode/current-mode universal biquad filter using unity-gain cells. Int. J. Electron. 2006, 93, 769–775. [Google Scholar] [CrossRef]
- Lee, C.N.; Chang, C.M. Single FDCCII-based mixed-mode biquad filter with eight outputs. AEU—Int. J. Electron. Commun. 2009, 63, 736–742. [Google Scholar] [CrossRef]
- Minaei, S.; Ibrahim, M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 2009, 37, 793–810. [Google Scholar] [CrossRef]
- Chen, H.P.; Liao, Y.Z.; Lee, W.T. Tunable mixed-mode OTA-C universal filter. Analog Integr. Circuits Signal Process. 2009, 58, 135–141. [Google Scholar] [CrossRef]
- Horng, J.W. High-order current-mode and transimpedance-mode universal filters with multiple-inputs and two-outputs using MOCCIIs. Radioengineering 2009, 18, 537–543. [Google Scholar]
- Lee, C.N. Multiple-mode OTA-C universal biquad filters. Circuits Syst. Signal Process. 2010, 29, 263–274. [Google Scholar] [CrossRef]
- Yuce, E. Fully integrable mixed-mode universal biquad with specific application of the CFOA. AEU—Int. J. Electron. Commun. 2010, 64, 304–309. [Google Scholar] [CrossRef]
- Liao, W.B.; Gu, J.C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci. 2011, 18, 443–448. [Google Scholar]
- Pandey, N.; Paul, S.K. Mixed mode universal filter. J. Circuits Syst. Comput. 2013, 22, 1250064. [Google Scholar] [CrossRef]
- Yeşil, A.; Kaçar, F. Electronically tunable resistorless mixed mode biquad filters. Radioengineering 2013, 22, 1016–1025. [Google Scholar]
- Lee, C.N. Independently tunable mixed-mode universal biquad filter with versatile input/output functions. AEU—Int. J. Electron. Commun. 2016, 70, 1006–1019. [Google Scholar] [CrossRef]
- Lee, C.N. Mixed-mode universal biquadratic filter with no need of matching conditions. J. Circuits Syst. Comput. 2016, 25, 1650106. [Google Scholar] [CrossRef]
- Singh, D.; Afzal, N. Fully digitally programmable generalized mixed mode universal filter configuration. Circuits Syst. Signal Process. 2016, 35, 1457–1480. [Google Scholar] [CrossRef]
- Singh, D.; Afzal, N. Digitally programmable mixed mode universal filter using followers-a minimal realization. Analog Integr. Circuits Signal Process. 2016, 86, 289–298. [Google Scholar] [CrossRef]
- Pandey, R.; Pandey, N.; Singhal, N. Single VDTA based dual mode single input multioutput biquad filter. J. Eng. 2016, 2016, 1674343. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.P.; Yang, W.S. Electronically tunable current controlled current conveyor transconductance amplifier-based mixed-mode biquadratic filter with resistorless and grounded capacitors. Appl. Sci. 2017, 7, 244. [Google Scholar] [CrossRef] [Green Version]
- Parvizi, M.; Taghizadeh, A.; Mahmoodian, H.; Kozehkanani, Z.D. A low-power mixed-mode SIMO universal Gm–C filter. J. Circuits Syst. Comput. 2017, 26, 1750164. [Google Scholar] [CrossRef]
- Horng, J.W.; Wu, C.M.; Herencsar, N. Current-mode and transimpedance-mode universal biquadratic filter using two current conveyors. Indian J. Eng. Mater. Sci. 2017, 24, 461–468. [Google Scholar]
- Cini, U.; Aktan, M. Dual-mode OTA based biquadratic filter suitable for current-mode applications. AEU—Int. J. Electron. Commun. 2017, 80, 43–47. [Google Scholar] [CrossRef]
- Faseehuddin, M.; Sampe, J.; Shireen, S.; Ali, S.H.M. A novel mix-mode universal filter employing a single active element and minimum number of passive components. Inf. MIDEM 2017, 47, 211–221. [Google Scholar]
- Chaturvedi, B.; Mohan, J.; Kumar, A. A new versatile universal biquad configuration for emerging signal processing applications. J. Circuits Syst. Comput. 2018, 27, 1850196. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. A new low-voltage low-power dual-mode VCII-based SIMO universal filter. Electronics 2019, 8, 765. [Google Scholar] [CrossRef] [Green Version]
- Albrni, M.A.; Faseehuddin, M.; Sampe, J.; Ali, S.H.M. Novel dual mode multifunction filter employing highly versatile VD-DXCC. Inf. MIDEM 2019, 49, 169–176. [Google Scholar] [CrossRef]
- Bhaskar, D.R.; Raj, A.; Kumar, P. Mixed-mode universal biquad filter using OTAs. J. Circuits Syst. Comput. 2020, 29, 2050162. [Google Scholar] [CrossRef]
- Albrni, M.I.A.; Mohammad, F.; Herencsar, N.; Sampe, J.; Ali, S.H.M. Novel electronically tunable biquadratic mixed-mode universal filter capable of operating in MISO and SIMO configurations. Inf. MIDEM 2020, 50, 189–203. [Google Scholar] [CrossRef]
- Mohammad, F.; Herencsar, N.; Albrni, M.A.; Sampe, J. Electronically tunable mixed mode universal filter employing a single active block and a minimum number of passive components. Appl. Sci. 2021, 11, 55. [Google Scholar] [CrossRef]
- Agrawal, D.; Maheshwari, S. High-performance electronically tunable analog filter using a single EX-CCCII. Circuits Syst. Signal Process. 2021, 40, 1127–1151. [Google Scholar] [CrossRef]
- Roongmuanpha, N.; Faseehuddin, M.; Herencsar, N.; Tangsrirat, W. Tunable mixed-mode voltage differencing buffered amplifier-based universal filter with independently high-Q factor controllability. Appl. Sci. 2021, 11, 9606. [Google Scholar] [CrossRef]
- Faseehuddin, M.; Herencsar, N.; Shireen, S.; Tangsrirat, W.; Md Ali, S.H. Voltage differencing buffered amplifier-based novel truly mixed-mode biquadratic universal filter with versatile input/output features. Appl. Sci. 2022, 12, 1229. [Google Scholar] [CrossRef]
- Unuk, T.; Yuce, E. A mixed-mode filter with DVCCs and grounded passive components only. AEU—Int. J. Electron. Commun. 2022, 144, 154063. [Google Scholar] [CrossRef]
- Horng, J.W.; Hou, C.L.; Chang, C.M.; Chou, H.P.; Lin, C.T.; Wen, Y.H. Quadrature oscillators with grounded capacitors and resistors using FDCCIIs. ETRI J. 2006, 28, 486–493. [Google Scholar] [CrossRef]
- Lahiri, A. Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 2009, 61, 199–203. [Google Scholar] [CrossRef]
- Maheshwari, S. Quadrature oscillator using grounded components with current and voltage outputs. IET Circuits Devices Syst. 2009, 3, 153–160. [Google Scholar] [CrossRef]
- Chen, H.P.; Wang, S.F.; Hsieh, M.Y. Tunable current-mode and voltage-mode quadrature oscillator using a DVCCTA. IEICE Electron. Express 2014, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tangsrirat, W. Dual-mode sinusoidal quadrature oscillator with single CCTA and grounded capacitors. Inf. MIDEM 2016, 46, 130–135. [Google Scholar]
- Srivastaya, M.; Prasad, D. VDCC based dual-mode sinusoidal quadrature oscillator with outputs at appropriate impedance. Theor. Appl. Electr. Eng. 2016, 14, 168–177. [Google Scholar] [CrossRef]
- Tangsrirat, W. Compact quadrature oscillator with voltage and current outputs using only single VDTA and grounded capacitors. Indian J. Pure Appl. Phys. 2017, 55, 254–260. [Google Scholar]
- Kumar, A.; Kushwaha, A.K.; Paul, S.K. Electronically tunable mixed mode quadrature oscillator using DX-MOCCII. J. Circuits Syst. Comput. 2021, 30, 2150006. [Google Scholar] [CrossRef]
- Channumsin, O.; Bhardwaj, K.; Srivastava, M.; Tangsrirat, W.; Petchmaneelumka, W. Single voltage differencing gain amplifier based dual-mode quadrature oscillator using only grounded passive components. Eng. Lett. 2022, 30, 255–260. [Google Scholar]
- Jaikla, W.; Siripruchyanun, M.; Lahiri, A. Resistorless dual-mode quadrature sinusoidal oscillator using a single active building block. Microelectron. J. 2011, 42, 135–140. [Google Scholar] [CrossRef]
- Jin, J.; Wang, C. Current-mode universal filter and quadrature oscillator using CDTAs. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Jin, J. Resistorless active SIMO universal filter and four-phase quadrature oscillator. Arab. J. Sci. Eng. 2014, 39, 3887–3894. [Google Scholar] [CrossRef]
- Tuntrakool, S.; Kumngern, M.; Sotner, R.; Herencsar, N.; Suwanjan, P.; Jaikla, W. High Input Impedance Voltage-Mode Universal Filter and Its Modification as Quadrature Oscillator Using VDDDAs. Indian J. Pure Appl. Phys. 2017, 55, 324–332. [Google Scholar]
- Gupta, M.; Arora, T.S. Realization of current mode universal filter and a dual-mode single resistance controlled quadrature oscillator employing VDCC and only grounded passive elements. Adv. Electr. Electron. Eng. 2018, 15, 833–845. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F. Current-mode universal filter and quadrature oscillator using current controlled current follower transconductance amplifiers. Analog Integr. Circuits Signal Process. 2019, 100, 235–248. [Google Scholar] [CrossRef]
- Yucel, F.; Yuce, E. Supplementary CCII based second-order universal filter and quadrature oscillators. AEU—Int. J. Electron. Commun. 2020, 118, 153138. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Pukkalanun, T.; Channumsin, O. Single VDGA-based dual-mode multifunction biquadratic filter and quadrature sinusoidal oscillator. Inf. MIDEM 2020, 50, 125–136. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F.; Kulej, T.; Psychalinos, C. Multiple-input universal filter and quadrature oscillator using multiple-input operational transconductance amplifiers. IEEE Access 2021, 9, 56253–56263. [Google Scholar] [CrossRef]
- Arora, T.S.; Gupta, M.; Gupta, S.N. An explicit output current-mode quadrature sinusoidal oscillator and a universal filter employing only grounded passive components-a minimal realization. Adv. Electr. Electron. Eng. 2021, 19, 258–271. [Google Scholar] [CrossRef]
- Satansup, J.; Tangsrirat, W. CMOS realization of voltage differencing gain amplifier (VDGA) and its application to biquad filter. Indian J. Eng. Mater. Sci. 2013, 20, 457–464. [Google Scholar]
- Taskiran, Z.G.C.; Sedef, H.; Anday, F. Voltage differencing gain amplifier-based nth-order low-pass voltage-mode filter. J. Circuit Syst. Comp. 2018, 27, 1850089. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Pukkalanun, T.; Channumsin, O. Dual-mode multifunction filter realized with single voltage differencing gain amplifier (VDGA). Eng. Rev. 2021, 41, 1–14. [Google Scholar] [CrossRef]
- Channumsin, O.; Tangsrirat, W. Compact electronically tunable quadrature oscillator using single voltage differencing gain amplifier (VDGA) and all grounded passive elements. Turk. J. Electr. Eng. Comp. Sci. 2017, 25, 2686–2695. [Google Scholar] [CrossRef]
- Channumsin, O.; Tangsrirat, W. Voltage differencing gain amplifier-based sinusoidal quadrature oscillator using only two grounded capacitors. Recent Adv. Electr. Electron. Eng. 2019, 12, 439–444. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Channumsin, O.; Pimpol, J. Electronically adjustable capacitance multiplier circuit with a single voltage differencing gain amplifier (VDGA). Inf. MIDEM 2019, 49, 211–217. [Google Scholar]
- Arbel, A.F.; Goldminz, L. Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process. 1992, 2, 243–255. [Google Scholar] [CrossRef]
- National Semiconductor, LM13600: Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers. Available online: https://pdf1.alldatasheet.com/datasheet-pdf/view/8640/NSC/LM13600N.html (accessed on 31 May 2022).
- Analog Devices, AD844: 60 MHz, 2000 V/μs, Monolithic op amp with Quad Low Noise. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/AD844.pdf (accessed on 29 June 2022).



































| Ref./ Year | Working as Both MUBF and QO | No. of Active and Passive Used | MUBF | QO | Inbuilt Tunability | Technology | Supply Voltages (V) | Power Consumption (W) | Technology | Supply Voltages (V) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Filter Function Realized | Independent Tunable Q | Type (VM/CM) and Number of Outputs | Independent Tuning of OC and OF | ||||||||||||
| VM | CM | TAM | TIM | ||||||||||||
| [1]/2003 | N | DO-CCCII = 4, C = 3 | LP, BP, HP | LP, BP, HP | LP, BP, HP | LP, BP, HP | Y | -- | -- | Y | HF3 CMOS | ±5 | N/A | -- | -- |
| [2]/2006 | N | UGC = 8, R = 7, C = 2 | all five | all five | -- | -- | N | -- | -- | N | 1.2 μm CMOS | ±5, −2.35, −3.54 | N/A | -- | -- |
| [3]/2009 | N | FDCCII = 1, R = 3, C = 2 | all five | all five | BP, HP | all five | Y | -- | -- | N | TSMC 0.25 μm | ±1.25 | N/A | -- | -- |
| [4]/2009 | N | DVCC = 3, Rmos = 3, C = 2 | LP, BP, BS | all five | all five | LP, BP | Y | -- | -- | N | TSMC 0.35 μm | ±1.5, 0.75 | 5.76 m | -- | -- |
| [5]/2009 | N | OTA = 5, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | TSMC 0.35 μm | ±1.65, −1 | 30.95 m | -- | -- |
| [6]/2009 | N | MO-CCII = 3, R = 3, C = 2 | -- | all five | -- | all five | N | -- | -- | N | TSMC 0.18 μm | ±1.25, −0.65 | N/A | -- | -- |
| [7]/2010 | N | OTA = 3, DO-OTA = 1, MO-OTA = 1, C = 2 | all five | all five | all five | all five | N | -- | -- | Y | TSMC 0.25 μm | ±1.25 | N/A | -- | -- |
| [8]/2010 | N | SCFOA = 1, R = 3, C = 2 | all five | LP, BP, BS | -- | -- | N | -- | -- | N | TSMC 0.25 μm | ±1.25 | 2.53 m | -- | -- |
| [9]/2011 | N | DDCC = 3, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | N | TSMC 0.25 μm | ±1.25, +0.41 | N/A | -- | -- |
| [10]/2013 | N | MO-CCCII = 4, C = 2 | all five | all five | all five | all five | N | -- | -- | Y | AMS 0.35 μm | ±1.25 | N/A | -- | -- |
| [11]/2013 | N | VDTA = 2, C = 2 | all five | -- | all five | -- | Y | -- | -- | Y | TSMC 0.18 μm | ±1.5 | N/A | -- | -- |
| [12]/2016 | N | FDCCII = 1, DDCC = 1, R = 6, C = 2 | all five | all five | all five | all five | Y | -- | -- | N | TSMC 0.18 μm | ±0.9, ±0.38 | N/A | AD844 | ±15 |
| [13]/2016 | N | FDCCII = 2, R = 5, C = 2 | all five | all five | all five | all five | N | -- | -- | N | TSMC 0.18 μm | ±0.9 | N/A | -- | -- |
| [14]/2016 | N | DP-CCII = 6, MO-CCII = 2, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | TSMC 0.18 μm | ±0.75 | 3.26 m | -- | -- |
| [15]/2016 | N | DPCF = 5, VF = 2, switch = 3, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | TSMC 0.18 μm | ±1.5 | 1.2 m | -- | -- |
| [16]/2016 | N | VDTA = 1, R = 1, C = 3 | LP, BP, HP | LP, BP, HP | -- | -- | Y | -- | -- | Y | TSMC 0.18 μm | ±0.9 | 0.54 m | -- | -- |
| [17]/2017 | N | CCCCTA = 3, C = 2 | all five | all five | all five | LP, BP, HP | Y | -- | -- | Y | TSMC 0.18 μm | ±0.9 | 1.99 m | -- | -- |
| [18]/2017 | N | MI-OTA = 3, MO-OTA = 3, C = 2 | all five | all five | all five | all five | N | -- | -- | Y | TSMC 0.18 μm | ±0.5 | 75 μ | -- | -- |
| [19]/2017 | N | DVCC = 1, MO-CCII = 1, R = 4, C = 2 | -- | all five | -- | all five | Y | -- | -- | N | TSMC 0.18 μm | ±0.9, ±0.38 | N/A | -- | -- |
| [20]/2017 | N | OTA = 1, DO-OTA = 3, switch = 1, C = 2 | -- | LP, BP, HP | LP, BP, HP | -- | Y | -- | -- | Y | TSMC 0.35 μm | N/A | 1.3 m | -- | -- |
| [21]/2017 | N | DXCCDITA = 1, R = 2, C = 2 | all five | all five | BP, HP | all five | N | -- | -- | Y | TSMC 0.35 μm | ±1.5, +0.55 | N/A | AD844, LM13700 | ±5 |
| [22]/2018 | N | FDCCII = 2, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | N | TSMC 0.18 μm | ±0.9 | 1.32 m | -- | -- |
| [23]/2019 | N | VCII = 3, I-CB = 1, R = 3, C = 3 | all five | all five | all five | all five | N | -- | -- | N | TSMC 0.18 μm | ±0.9 | 1.47 μ | -- | -- |
| [24]/2019 | N | VD-DXCC = 1, R = 2, C = 2 | all five | all five | -- | -- | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | 2.237 m | -- | -- |
| [25]/2020 | N | OTA = 5, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | ADE 0.18 μm | ±0.9, −0.36 | 0.191 m | -- | -- |
| [26]/2020 | N | EXCCTA = 2, switch = 1, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | N/A | -- | -- |
| [27]/2021 | N | VD-EXCCII = 1, R = 3, C = 3 | all five | all five | all five | all five | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | 5.76 m | -- | -- |
| [28]/2021 | N | EX-CCCII = 1, R = 1, C = 2 | all five | all five | all five | BP, HP | N | -- | -- | Y | TSMC 0.18 μm | ±0.5 | 1.35 m | AD844 | ±8 |
| [29]/2021 | N | VDBA = 2, R = 2, C = 2 | all five | all five | all five | LP, BP | Y | -- | -- | Y | TSMC 0.18 μm | ±0.75 | 0.373 m | LT1228 | ±5 |
| [30]/2022 | N | VDBA = 3, R = 1, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | 5.482 m | CA3080, LF356 | ±5 |
| [31]/2022 | N | DVCC = 3, R = 4, C = 2 | LP, BP, HP | all five | BP, HP | LP, BP, HP | N | -- | -- | N | TSMC 0.18 μm | ±1.25, +0.55 | 8.47 m | AD844 | ±12 |
| [32]/2006 | N | FDCCII = 1, R = 3, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | N | TSMC 0.18 μm | ±2.5 | 118.1 m | -- | -- |
| [33]/2009 | N | CDTA = 2, R = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | MIETEC 0.5 μm | N/A | N/A | -- | -- |
| [34]/2009 | N | DVCC = 3, R = 3, C = 3 | -- | -- | -- | -- | −− | VM/CM, VM = 5, CM = 2 | Y | N | MIETEC 0.5 μm | N/A | N/A | -- | -- |
| [35]/2014 | N | DVCCTA = 1, R = 2, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.18 μm | ±0.9, −0.5 | 2.283 m | -- | -- |
| [36]/2016 | N | CCCTA = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | BJT, TSMC 0.35 μm | ±1 | N/A | -- | -- |
| [37]/2016 | N | VDCC = 2, R = 2, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 3 | Y | Y | TSMC 0.18 μm | ±0.9 | N/A | -- | -- |
| [38]/2017 | N | VDTA = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.25 μm | ±1.5 | 2.09 m | -- | -- |
| [39]/2020 | N | DX- MOCCII = 2, Rmos = 1, R = 2, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 4, CM = 3 | Y | N | TSMC 0.25 μm | ±1.25, −0.3, +0.81 | 6.87 m | AD844 | ±9.5 |
| [40]/2022 | N | VDGA = 1, R = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | N | Y | TSMC 0.35 μm | ±1.5 | 1.36 m | -- | -- |
| [41]/2011 | Y | DVCCCTA = 1, C = 2 | LP, BP | -- | -- | -- | Y | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.25 μm | ±1.25 | N/A | -- | -- |
| [42]/2014 | Y | CDTA = 2, C = 2 | -- | all five | -- | -- | N | CM, CM = 2 | N | Y | TSMC 0.18 μm | ±1.5 | N/A | AD844, CA3080 | ±12 |
| [43]/2014 | Y | CDTA = 3, C = 2 | -- | all five | -- | -- | N | CM, CM = 4 | Y | Y | MIETEC 0.5 μm | ±2.5 | 19.6 m | -- | -- |
| [44]/2017 | Y | VDDDA = 3, R = 1, C = 2 | all five | -- | -- | -- | Y | VM, VM = 2 | Y | Y | TSMC 0.18 μm | ±0.9 | 0.343 m | AD830, LM13700 | ±5 |
| [45]/2017 | Y | VDCC = 2, switch = 3, R = 2, C = 2 | -- | all five | -- | -- | Y | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.18 μm | ±0.9 | N/A | OPA860 | N/A |
| [46]/2019 | Y | CCFTA = 2, C = 2 | -- | all five | -- | -- | Y | VM/CM VM = 2 CM = 4 | Y | Y | TSMC 0.18 μm | ±1 | 2 m | -- | -- |
| [47]/2020 | Y | CCII = 2, R = 3, C = 2 | all five | -- | -- | -- | Y | VM, VM = 2 | Y | N | IBM 0.13 μm | ±0.75, +0.23 | 5.03 m | AD844 | ±6 |
| [48]/2020 | Y | VDGA = 1, R = 2, C = 2 | LP, BP, HP | LP, BP, HP | -- | -- | Y | VM/CM, VM = 2, CM = 2 | N | Y | TSMC 0.25 μm | ±1 | 1.49 m | -- | -- |
| [49]/2021 | Y | MI-OTA = 3, OTA = 1, C = 2 | all five | -- | -- | -- | Y | VM, VM = 3 | Y | Y | TSMC 0.18 μm | ±1.2 | 96 μ | LM13700 | ±5 |
| [50]/2021 | Y | VDCC = 2, switch = 2, R = 1, C = 2 | -- | all five | -- | -- | N | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.18 μm | ±0.9 | N/A | OPA860 | N/A |
| This work | Y | VDGA = 1, R = 1, C = 2 | all five | all five | all five | LP, BP | Y | VM/CM, VM = 2, CM = 3 | Y | Y | TSMC 0.18 μm | ±0.9 | 1.31 m | LM13600 | ±5 |
| Transistors | W (μm) | L (μm) |
|---|---|---|
| M1k–M2k | 23.5 | 0.18 |
| M3k–M4k | 30 | 0.18 |
| M5k–M7k | 5 | 0.18 |
| M8k–M9k | 5.5 | 0.18 |
| LP | BP | HP | BS | AP | ||
|---|---|---|---|---|---|---|
| VM | fo (MHz) | 3.098 | 3.105 | 3.064 | 2.999 | 3.030 |
| Error (%) | 2.579 | 2.371 | 3.638 | 5.686 | 4.714 | |
| CM | fo (MHz) | 3.099 | 3.106 | 3.068 | 2.964 | 3.010 |
| Error (%) | 2.547 | 2.336 | 3.522 | 6.786 | 5.346 | |
| TAM | fo (MHz) | 3.100 | 3.104 | 3.067 | 2.964 | 3.009 |
| Error (%) | 2.525 | 2.406 | 3.557 | 6.786 | 5.377 | |
| TIM | fo (MHz) | 3.100 | 3.106 | − | − | − |
| Error (%) | 2.519 | 2.343 | − | − | − |
| LP | BP | HP | BS | AP | ||
|---|---|---|---|---|---|---|
| VM | THD (%) | 0.47 | 0.45 | 0.55 | 1.92 | 1.29 |
| DC component (mV) | 9.55 | 2.36 | 2.37 | 2.46 | 3.04 | |
| CM | THD (%) | 1.5 | 1.49 | 0.9 | 1.87 | 1.39 |
| DC component (μA) | 10.79 | 4.42 | 0.044 | 10.74 | 15.17 | |
| TAM | THD (%) | 1.57 | 1.45 | 0.9 | 1.86 | 1.26 |
| DC component (μA) | 10.74 | 4.43 | 0.015 | 10.72 | 15.15 | |
| TIM | THD (%) | 0.58 | 0.38 | − | − | − |
| DC component (mV) | 9.62 | 2.39 | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roongmuanpha, N.; Tangsrirat, W.; Pukkalanun, T. Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors 2022, 22, 5303. https://doi.org/10.3390/s22145303
Roongmuanpha N, Tangsrirat W, Pukkalanun T. Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors. 2022; 22(14):5303. https://doi.org/10.3390/s22145303
Chicago/Turabian StyleRoongmuanpha, Natchanai, Worapong Tangsrirat, and Tattaya Pukkalanun. 2022. "Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator" Sensors 22, no. 14: 5303. https://doi.org/10.3390/s22145303
APA StyleRoongmuanpha, N., Tangsrirat, W., & Pukkalanun, T. (2022). Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors, 22(14), 5303. https://doi.org/10.3390/s22145303

