Photoemission of Plasmonic Gold Nanostars in Laser-Controlled Electron Current Devices for Technical and Biomedical Applications
Abstract
:1. Introduction
2. Trends in the Development of Blade-Type Photosensors from Micro- to Nano-Sized Sensitive Elements
- −
- Low voltage (providing a high field emission current density up to 100 mA/cm2 at a voltage of about 150 V);
- −
- Ensuring stable operation in technical vacuum conditions due to the location of the emitter and control electrodes in parallel but multi-level planes. As a result, the emitter is protected from destructive bombardment by the flow of high-energy ions of molecules of the residual atmosphere;
- −
- Emitter life of 8700 h at the above-average current density;
- −
- The technology has been worked out in the manufacture of field emission displays with a pixel matrix of 960 × 234 [26].
3. Synthesis of Plasmonic GNS and Their Optical Properties
4. Experimental Study of Field and Photofield Emission
5. Estimation of Admissible Regimes of GNS Irradiation with Femtosecond Pulses
- The time to reach the maximum electron temperature in model 2 is significantly (approximately 20 times) higher than this value for the two-temperature model;
- At the same power density of irradiating light, the maximum of electron temperature in model 2 is approximately 8% less than this value for the two-temperature model;
- At the same value of the electron temperature maxima , the time interval during which the electron temperature retains high values is approximately three times higher than this value for the two-temperature model as follows: (see inset in Figure 13).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robatjazi, H.; Lou, M.; Clark, B.D.; Jacobson, C.R.; Swearer, D.F.; Nordlander, P.; Halas, N.J. Site-Selective Nanoreactor Deposition on Photocatalytic Al Nanocubes. Nano Lett. 2020, 20, 4550–4557. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Nie, H.; Tang, C.; Cui, Y.; Yan, B.; Zhang, Z.; Kong, Y.; Xu, Z.; Cai, P. Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials. Appl. Phys. Express 2019, 12, 052015. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically Resonant Dielectric Nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Cao, G.; Yang, H.; Zhou, X.; Wu, Y. Dynamic Control of Double Plasmon-Induced Transparencies in Aperture-Coupled Waveguide-Cavity System. Plasmonics 2018, 13, 345–352. [Google Scholar] [CrossRef]
- Cao, G.; Li, H.; Deng, Y.; Zhan, S.; He, Z.; Li, B. Systematic Theoretical Analysis of Selective-Mode Plasmonic Filter Based on Aperture-Side-Coupled Slot Cavity. Plasmonics 2014, 9, 1163–1169. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Zhao, F.; Lin, J.; Lei, Z.; Yi, Z.; Qin, F.; Zhang, J.; Liu, L.; Wu, X.; Yang, W.; Wu, P. Realization of 18.97% theoretical efficiency of 0.9 Ojm thick c-Si/ZnO heterojunction ultrathin-film solar cells via surface plasmon resonance enhancement. Phys. Chem. Chem. Phys. 2022, 24, 4871–4880. [Google Scholar] [CrossRef]
- Atta, S.; Tsoulos, T.V.; Fabris, L. Shaping Gold Nanostar Electric Fields for Surface-Enhanced Raman Spectroscopy Enhancement via Silica Coating and Selective Etching. J. Phys. Chem. C 2016, 120, 20749–20758. [Google Scholar] [CrossRef]
- Feist, A.; Bach, N.; da Silva, N.R.; Danz, T.; Möller, M.; Priebe, K.E.; Domröse, T.; Gatzmann, J.G.; Rost, S.; Schauss, J.; et al. Ultrafast Transmission Electron Microscopy Using a Laser-Driven Field Emitter: Femtosecond Resolution with a High Coherence Electron Beam. Ultramicroscopy 2017, 176, 63–73. Available online: https://www.sciencedirect.com/science/article/pii/S0304399116303709 (accessed on 25 May 2022). [CrossRef]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217. [Google Scholar] [CrossRef] [PubMed]
- Morales-Dalmau, J.; Vilches, C.; de Miguel, I.; Sanz, V.; Quidant, R. Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale 2018, 5, 2632–2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pylaev, T.; Vanzha, E.; Avdeeva, E.; Khlebtsov, B.; Khlebtsov, N. A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers. J. Biophotonics 2019, 12, e201800166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, L. Gold Nanostars in Biology and Medicine: Understanding Physicochemical Properties to Broaden Applicability. J. Phys. Chem. C 2020, 124, 26540–26553. [Google Scholar] [CrossRef]
- Yakunin, A.N.; Zarkov, S.V.; Avetisyan, Y.A.; Akchurin, G.G.; Aban’shin, N.P.; Tuchin, V.V. Modeling of laser-induced plasmon effects in GNS-DLC-based material for application in X-ray source array sensors. Sensors 2021, 21, 1248. [Google Scholar] [CrossRef]
- Park, S.; Gupta, A.P.; Yeo, S.J.; Jung, J.; Paik, S.H.; Mativenga, M.; Kim, S.H.; Shin, J.H.; Ahn, J.S.; Ryu, J. Carbon nanotube field emitters synthesized on metal alloy substrate by PECVD for customized compact field emission devices to be used in X-ray source applications. Nanomaterials 2018, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Thomlinson, W.; Elleaume, H.; Porra, L.; Suortti, P. K-edge subtraction synchrotron X-ray imaging in bio-medical research. Phys. Med. 2018, 49, 58–76. [Google Scholar] [CrossRef]
- Polyakov, A.; Senft, C.; Thompson, K.F.; Feng, J.; Cabrini, S.; Schuck, P.J.; Padmore, H.A.; Peppernick, S.J.; Hess, W.P. Plasmon-enhanced photocathode for high brightness and high repetition rate X-ray sources. Phys. Rev. Lett. 2013, 110, 076802. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Kang, J.S.; Park, K.C. Carbon Nanotube Electron Emitter for X-ray Imaging. Materials 2012, 5, 2353–2359. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, J.; Wu, Q.; Liu, M.; Zhou, R.; Chen, Z. Fast microfocus X-ray tube based on carbon nanotube array. J. Vac. Sci. Technol. B 2019, 37, 051203. [Google Scholar] [CrossRef]
- Neculaes, V.B.; Edic, P.M.; Frontera, M.; Caiafa, A.; Wang, G.; De Man, B. Multisource X-ray and CT: Lessons Learned and Future Outlook. IEEE Access 2014, 2, 1568–1585. [Google Scholar] [CrossRef]
- The Board of Trustees of the Leland Stanford Junior University, Palo Alto, CA, USA. Photo Emitter X-ray Source Array (PEXSA). U.S. Patent US 9,520,260, 13 December 2016. Available online: https://patents.justia.com/patent/9520260 (accessed on 25 May 2022).
- Khlebtsov, B.N.; Panfilova, E.V.; Khanadeev, V.A.; Khlebtsov, N.G. Improved size-tunable synthesis and SERS properties of Au nanostars. J. Nanopart. Res. 2014, 16, 2623. [Google Scholar] [CrossRef]
- Zarkov, S.; Avetisyan, Y.; Akchurin, G.; Akchurin, G., Jr.; Bibikova, O.; Tuchin, V.; Yakunin, A. Numerical modeling of plasmonic properties of gold nanostars to prove the threshold nature of their modification under laser pulse. Opt. Eng. 2020, 59, 061628. [Google Scholar] [CrossRef]
- Yakunin, A.N.; Aban’shin, N.P.; Avetisyan, Y.A.; Akchurin, G.G.; Akchurin, G.G., Jr.; Loginov, A.P.; Morev, S.P.; Mosiyash, D.S. Stabilization of Field- and Photoemission of a Planar Structure with a Nanosized Diamond-Like Carbon Film. J. Commun. Technol. Electron. 2019, 64, 83–88. [Google Scholar] [CrossRef]
- Gulyaev, Y.V.; Aban’shin, N.P.; Gorfinkel, B.I.; Morev, S.P.; Rezchikov, A.F.; Sinitsyn, N.I.; Yakunin, A.N. New solutions for designing promising devices based on low-voltage field emission from carbon nanostructures. Tech. Phys. Lett. 2013, 39, 525–528. [Google Scholar] [CrossRef]
- Aban’shin, N.P.; Avetisyan, Y.A.; Akchurin, G.G.; Loginov, A.P.; Morev, S.P.; Mosiyash, D.S.; Yakunin, A.N. A planar diamond-like carbon nanostructure for a low-voltage field emission cathode with a developed surface. Tech. Phys. Lett. 2016, 42, 509–512. [Google Scholar] [CrossRef]
- Yakunin, A.N.; Aban’shin, N.P.; Akchurin, G.G.; Avetisyan Yu, A.; Loginov, A.P.; Yuvchenko, S.A.; Zimnyakov, D.A. A Visible and Near-IR Tunnel Photosensor with a Nanoscale Metal Emitter: The Effect of Matching of Hot Electrons Localization Zones and a Strong Electrostatic Field. Appl. Sci. 2019, 9, 5356. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhang, P. A quantum model for photoemission from metal surfaces and its comparison with the three-step model and Fowler-DuBridge model. J. Appl. Phys. 2020, 127, 164903. [Google Scholar] [CrossRef] [Green Version]
- Frens, G. Controlled nucleation for regulation of particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- 14d. Wave Optics Module User’s Guide. Available online: https://doc.comsol.com/5.3/doc/com.comsol.help.woptics/WaveOpticsModuleUsersGuide.pdf (accessed on 25 May 2022).
- Jin, J.-M. Theory and Computation of Electromagnetic Fields; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 3–560. ISBN 978-0-470-53359-8. [Google Scholar]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Hommelhoff, P.; Kealhofer, C.; Kasevich, M.A. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 2006, 97, 247402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdellier, F.; Caruso, G.M.; Weber, S.; Kociak, M.; Arbouet, A. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source. Ultramicroscopy 2017, 186, 128–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafel, A.; Meier, S.; Ristein, J.; Hommelhoff, P. Femtosecond laser-induced electron emission from nanodiamond-coated tungsten needle tips. Phys. Rev. Lett. 2019, 123, 146802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borz, M.; Mammez, M.H.; Blum, I.; Houard, J.; Da Costa, G.; Delaroche, F.; Idlahcen, S.; Haboucha, A.; Hideur, A.; Kleshch, V.I.; et al. Photoassisted and multiphoton emission from single-crystal diamond needles. Nanoscale 2019, 11, 6852–6858. [Google Scholar] [CrossRef] [PubMed]
- Fazio, E.; Gökce, B.; De Giacomo, A.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications. Nanomaterials 2020, 10, 2317. [Google Scholar] [CrossRef]
- Sharma, P.; Vatsa, R.K. Chapter 16—Nanoclusters Under Extreme Ionization Conditions. In Materials Under Extreme Conditions: Recent Trends and Future Prospects; Tyagi, A.K., Banerjee, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 575–613. [Google Scholar] [CrossRef]
- Sygletou, M.; Benedetti, S.; Ferrera, M.; Pierantozzi, G.M.; Cucini, R.; Della Valle, G.; Carrara, P.; De Vita, A.; di Bona, A.; Torelli, P.; et al. Quantitative Ultrafast Electron Temperature Dynamics in Photo-Excited Au Nanoparticles. Small 2021, 17, 2100050. [Google Scholar] [CrossRef]
- Werner, D.; Hashimoto, S. Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles. J. Phys. Chem. C 2011, 115, 5063–5072. [Google Scholar] [CrossRef]
- Lin, Z.; Zhigilei, L.V.; Celli, V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 2008, 77, 075133. [Google Scholar] [CrossRef] [Green Version]
- Askes, S.H.C.; Garnett, E.C. Ultrafast Thermal Imprinting of Plasmonic Hotspots. Adv. Mater. 2021, 33, 2105192. [Google Scholar] [CrossRef]
- Santiago, E.Y.; Besteiro, L.V.; Kong, X.-T.; Correa-Duarte, M.A.; Wang, Z.; Govorov, A.O. Efficiency of Hot-Electron Generation in Plasmonic Nanocrystals with Complex Shapes: Surface-Induced Scattering, Hot Spots, and Interband Transitions. ACS Photonics 2020, 7, 2807–2824. [Google Scholar] [CrossRef]
- Kong, X.-T.; Wang, Z.; Govorov, A.O. Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination. Adv. Opt. Mater. 2017, 5, 1600594. [Google Scholar] [CrossRef] [Green Version]
- Besteiro, L.V.; Kong, X.-T.; Wang, Z.; Hartland, G.V.; Govorov, A.O. Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics 2017, 4, 2759–2781. [Google Scholar] [CrossRef] [Green Version]
Parameter | Ref. [19] | Ref. [22] | Proposed in This Paper |
---|---|---|---|
Characteristics of the emission structure | Array of vertically aligned CNT bundles | Metal film doped with CsBr, CsI | Array of blade-type planar pixels “Mo-DLC-GNS” |
Period of elementary emitter arrangement | 15 µm | - | 6 µm |
Pixel size | 2.0 mm × 0.5 mm | 1.0 mm × 1.0 mm | 1.0 mm × 0.3 mm |
Number of pixels | - | Hundreds | up to 960 × 234 pixels |
Possibility of optical control | - | + | + |
Operating voltage required to provide photofield emission | 2.1 kV electrical field emission | 250 kV photofield emission | ≤150 V photofield emission |
Wavelength of control laser radiation | - | 405 nm | 532 nm (green)/ 665 nm (red) |
Average power of the laser controlling the emitter current | - | 150 mW | 100 mW (green)/ 20 mW (red) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakunin, A.N.; Avetisyan, Y.A.; Akchurin, G.G.; Zarkov, S.V.; Aban’shin, N.P.; Khanadeev, V.A.; Tuchin, V.V. Photoemission of Plasmonic Gold Nanostars in Laser-Controlled Electron Current Devices for Technical and Biomedical Applications. Sensors 2022, 22, 4127. https://doi.org/10.3390/s22114127
Yakunin AN, Avetisyan YA, Akchurin GG, Zarkov SV, Aban’shin NP, Khanadeev VA, Tuchin VV. Photoemission of Plasmonic Gold Nanostars in Laser-Controlled Electron Current Devices for Technical and Biomedical Applications. Sensors. 2022; 22(11):4127. https://doi.org/10.3390/s22114127
Chicago/Turabian StyleYakunin, Alexander N., Yury A. Avetisyan, Garif G. Akchurin, Sergey V. Zarkov, Nikolay P. Aban’shin, Vitaly A. Khanadeev, and Valery V. Tuchin. 2022. "Photoemission of Plasmonic Gold Nanostars in Laser-Controlled Electron Current Devices for Technical and Biomedical Applications" Sensors 22, no. 11: 4127. https://doi.org/10.3390/s22114127
APA StyleYakunin, A. N., Avetisyan, Y. A., Akchurin, G. G., Zarkov, S. V., Aban’shin, N. P., Khanadeev, V. A., & Tuchin, V. V. (2022). Photoemission of Plasmonic Gold Nanostars in Laser-Controlled Electron Current Devices for Technical and Biomedical Applications. Sensors, 22(11), 4127. https://doi.org/10.3390/s22114127