Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking
Abstract
:1. Introduction
2. Conformal Integration Strategy
3. Design Aspects
3.1. Platform Materials and Characterization
3.2. Conductive-Ink-Printed Antennas
3.3. Overmolded Antennas
3.4. Interfacing the Antennas
3.4.1. U.FL Coaxial Connector
3.4.2. Interposer to Printed Transmission Line
4. Antenna Measurement Results and Analysis
4.1. 895-MHz Conductive-Ink-Printed Monopole Antenna
4.2. 2.45-GHz Conductive-Ink-Printed CPW Patch Antenna
4.3. Monopole and CPW Patch Overmolded on Suitcase
- (i)
- only shirts;
- (ii)
- only sweaters;
- (iii)
- sweaters topped by a laptop.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikpehai, A.; Adebisi, B.; Rabie, K.M.; Anoh, K.; Ande, R.E.; Hammoudeh, M.; Gacanin, H.; Mbanaso, U.M. Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review. IEEE Internet Things J. 2019, 6, 2225–2240. [Google Scholar] [CrossRef] [Green Version]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutorials 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Mineo, A.; Palesi, M.; Patti, D.; Catania, V. Cloud-Based Energy Efficient Scheme for Sigfox Monarch as Asset Tracking Service. In Proceedings of the 2020 International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2 September 2020; pp. 1–6. [Google Scholar]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A Comparative Study of LPWAN Technologies for Large-Scale IoT Deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Ghazal, M.; Ali, S.; Haneefa, F.; Sweleh, A. Towards Smart Wearable Real-Time Airport Luggage Tracking. In Proceedings of the 2016 International Conference on Industrial Informatics and Computer Systems (CIICS), Sharjah, United Arab Emirates, 13–15 March 2016; pp. 1–6. [Google Scholar]
- de Juniac, A. IATA Annual Review 2019; Technical Report; International Air Transport Association: Seoul, Korea, 2019. [Google Scholar]
- Medeiros, C.R.; Costa, J.R.; Fernandes, C.A. Passive UHF RFID Tag for Airport Suitcase Tracking and Identification. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Sennou, A.S.; Berrada, A.; Salih-Alj, Y.; Assem, N. An Interactive RFID-based Bracelet for Airport Luggage Tracking System. In Proceedings of the 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, Thailand, 29–31 January 2013; pp. 40–44. [Google Scholar]
- Rouchdi, Y.; Haibi, A.; El Yassini, K.; Boulmalf, M.; Oufaska, K. RFID Application to Airport Luggage Tracking as a Green Logistics Approach. In Proceedings of the 2018 IEEE 5th International Congress on Information Science and Technology (CiSt), Marrakech, Morocco, 21–27 October 2018; pp. 642–649. [Google Scholar]
- de Juniac, A. IATA Annual Review 2020; Technical Report; International Air Transport Association: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Du, M.J. Study for the Intelligent Luggage Tracking System Based on Near Field Bluetooth Technology. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November 2019; pp. 660–664. [Google Scholar]
- Gupta, V.; Kumar, R.; Mishra, R.G.; Semwal, A.; Siwach, S. “Design and Optimization of Luggage Tracking System on Airport”. In Proceedings of the International Conference on Intelligent Communication, Control and Devices, Dehradun, India, 15–16 April 2017; Singh, R., Choudhury, S., Eds.; Springer: Singapore, 2017; pp. 833–838. [Google Scholar]
- Chaturvedi, R.; Darji, K.; Mahajan, A.; Varghese, M. Real Time Airport Luggage Tracking System. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–5. [Google Scholar]
- Zaric, A.; Matos, V.S.; Costa, J.R.; Fernandes, C.A. Viability of Wall-Embedded Tag Antenna for Ultra-Wideband Real-Time Suitcase Localisation. IET Microwaves Antennas Propag. 2014, 8, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Monarch. Available online: https://build.sigfox.com/monarch (accessed on 25 April 2022).
- Li, Y.; Barthelemy, J.; Sun, S.; Perez, P.; Moran, B. A Case Study of WiFi Sniffing Performance Evaluation. IEEE Access 2020, 8, 129224–129235. [Google Scholar] [CrossRef]
- Sigfox Geolocation: The Simplest and Cheapest IoT Location Service. Available online: https://www.sigfox.com/sites/default/files/SigfoxGeolocationFlyerDigitalA4.pdf (accessed on 25 April 2022).
- Pongpaibool, P.; Rattanawan, P.; Kitjaroen, M.; Wallada, W.; Siwamogsatham, S. An Ink-Reducing Printed Rectangular CPW Antenna Design via Selective Area Thickening. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 674–675. [Google Scholar]
- Li, G.; Huang, Y.; Gao, G.; Wei, X.; Tian, Z.; Bian, L. A Handbag Zipper Antenna for the Applications of Body-Centric Wireless Communications and Internet of Things. IEEE Trans. Antennas Propag. 2017, 65, 5137–5146. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Hsieh, Y. Integrated Metal-Frame Antenna for Smartwatch Wearable Device. IEEE Trans. Antennas Propag. 2015, 63, 3301–3305. [Google Scholar] [CrossRef]
- Khalili, H.F.; Lemey, S.; Caytan, O.; Deckmyn, T.; Agneessens, S.; Vande Ginste, D.; Rogier, H. Biodegradable Dual Semicircular Patch Antenna Tile for Smart Floors. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Kapusuz, K.Y.; Lemey, S.; Rogier, H. Substrate-Independent Microwave Components in Substrate Integrated Waveguide Technology for High-Performance Smart Surfaces. IEEE Trans. Microw. Theory Techn. 2018, 66, 3036–3047. [Google Scholar] [CrossRef] [Green Version]
- Houret, T.; Lizzi, L.; Ferrero, F.; Danchesi, C.; Boudaud, S. DTC-Enabled Frequency-Tunable Inverted-F Antenna for IoT Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 307–311. [Google Scholar] [CrossRef]
- Qadir, Q.M.; Rashid, T.A.; Al-Salihi, N.K.; Ismael, B.; Kist, A.A.; Zhang, Z. Low Power Wide Area Networks: A Survey of Enabling Technologies, Applications and Interoperability Needs. IEEE Access 2018, 6, 77454–77473. [Google Scholar] [CrossRef]
- Li, G.; Zhai, H.; Li, T.; Li, L.; Liang, C. CPW-Fed S-Shaped Slot Antenna for Broadband Circular Polarization. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 619–622. [Google Scholar] [CrossRef]
- Abbak, M.; Janghi, J.; Akduman, I. Compact Slot Type CPW-Fed Ultra-Wideband (UWB) Antenna. In Proceedings of the 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, Toulouse, France, 25–28 June 2012; pp. 1–4. [Google Scholar]
- Aliyeva, N.; Sas, H.S.; Saner Okan, B. Recent Developments on the Overmolding Process for the Fabrication of Thermoset and Thermoplastic Composites by the Integration of Nano/micron-Scale Reinforcements. Compos. Part A: Appl. Sci. Manuf. 2021, 149, 106525. [Google Scholar] [CrossRef]
- Mak, P.I.; Lin, Z.; Martins, R.P. Circuit Techniques for IoT-Enabling Short-Range ULP Radios. In Enabling the Internet of Things: From Integrated Circuits to Integrated Systems; Alioto, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Toledo, P.; Rubino, R.; Musolino, F.; Crovetti, P. Re-Thinking Analog Integrated Circuits in Digital Terms: A New Design Concept for the IoT Era. IEEE Trans. Circuits Syst. II: Express Briefs 2021, 68, 816–822. [Google Scholar] [CrossRef]
- QUAD Industries. Available online: https://www.quad-ind.com/ (accessed on 25 April 2022).
- Yang, P.; Yu, Z.Y. Using Generalized Transmission Line Equations to Model Two-Gap Structure. In Proceedings of the 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914), Chengdu, China, 27–29 June 2004; Volume 2, pp. 1464–1466. [Google Scholar]
- Hirose Electric Co., Ltd. Light Weight Micro SMT Coaxial Connector, 1.9mm to 2.4mm Mated Height; Hirose Electric Co., Ltd.: Kanagawa Prefecture, Japan, 2021. [Google Scholar]
- de Cos, M.E.; Las-Heras, F. Dual-Band Uniplanar CPW-Fed Monopole/EBG Combination With Bandwidth Enhancement. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 365–368. [Google Scholar] [CrossRef]
- Li, K.; Cheng, C.; Matsui, T.; Izutsu, M. Simulation and Experimental Study on Coplanar Patch and Array Antennas. In Proceedings of the 2000 Asia-Pacific Microwave Conference. Proceedings (Cat. No.00TH8522), Sydney, NSW, Australia, 3–6 December 2000; p. 1411. [Google Scholar]
- Chi, P.L.; Leong, K.M.; Waterhouse, R.; Itoh, T. A Miniaturized CPW-Fed Capacitor-Loaded Slot-Loop Antenna. In Proceedings of the 2007 International Symposium on Signals, Systems and Electronics, Montreal, QC, Canada, 30 July–2 August 2007; pp. 595–598. [Google Scholar]
- Weller, T.; Katehi, L.; Rebeiz, G. Single and Double Folded-Slot Antennas on Semi-Infinite Substrates. IEEE Trans. Antennas Propag. 1995, 43, 1423–1428. [Google Scholar] [CrossRef]
- Huang, Y. Radiation Efficiency Measurements of Small Antennas. In Handbook of Antenna Technologies; Chen, Z.N., Ed.; Springer: Singapore, 2014; pp. 1–21. [Google Scholar]
Loss Component | Computation (*) | 895 MHz | 2.45 GHz |
---|---|---|---|
Non-overmolded CPW line | |||
Reflection | 0.00 | 0.35 | |
Radiation | 0.02 | 0.13 | |
Metal/dielectrics | 0.22 | 0.45 | |
Total insertion loss | 0.24 | 0.93 | |
Overmolded CPW line | |||
Reflection | 0.04 | 0.07 | |
Radiation | 0.02 | 0.13 | |
Metal/dielectrics | 0.24 | 0.48 | |
Total insertion loss | 0.30 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima de Paula, I.; Rogier, H.; Van Torre, P. Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking. Sensors 2022, 22, 4077. https://doi.org/10.3390/s22114077
Lima de Paula I, Rogier H, Van Torre P. Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking. Sensors. 2022; 22(11):4077. https://doi.org/10.3390/s22114077
Chicago/Turabian StyleLima de Paula, Igor, Hendrik Rogier, and Patrick Van Torre. 2022. "Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking" Sensors 22, no. 11: 4077. https://doi.org/10.3390/s22114077
APA StyleLima de Paula, I., Rogier, H., & Van Torre, P. (2022). Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking. Sensors, 22(11), 4077. https://doi.org/10.3390/s22114077