Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine
Abstract
:1. Introduction
- (1)
- It is data-driven without a back-propagation learning strategy. It achieves less training time than existing ANN methods, paving the way for fast online training on embedded hardware for FLIM.
- (2)
- It can resolve mono- and bi-exponential models widely employed in practical experiments, wherein the amplitude and intensity average lifetimes were investigated.
- (3)
- Reconstructed lifetime parameters from ELM are more accurate than fitting and non-fitting algorithms regarding synthetic and experimental data under different photon-counting conditions whilst maintaining fast computing speed.
2. Apply ELM to FLIM
2.1. ELM Theory
2.2. TCSPC Model for FLIM
2.3. Training Data Preparation
3. Synthetic Data Analysis
3.1. Comparisons of Individual Lifetime Components
3.2. Comparisons of τA
3.3. Comparisons of τI
4. Experimental FLIM Data Analysis
4.1. Experimental Setup and Sample Preparation
4.2. Algorithm Evaluation
4.3. Low Counts Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorpas, D.; Ma, D.; Bec, J.; Yankelevich, D.R.; Marcu, L. Real-Time Visualization of Tissue Surface Biochemical Features Derived from Fluorescence Lifetime Measurements. IEEE Trans. Med. Imaging 2016, 35, 1802–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbater, O.; Ben-David, M.; Gannot, I. Fluorescence Lifetime and Depth Estimation of a Tumor Site for Functional Imaging Purposes. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 981–988. [Google Scholar] [CrossRef]
- Eruv, T.; Ben-David, M.; Gannot, I. An Alternative Approach to Analyze Fluorescence Lifetime Images as a Base for a Tumor Early Diagnosis System. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 98–104. [Google Scholar] [CrossRef]
- Marsden, M.; Weyers, B.W.; Bec, J.; Sun, T.; Gandour-Edwards, R.F.; Birkeland, A.C.; Abouyared, M.; Bewley, A.F.; Farwell, D.G.; Marcu, L. Intraoperative Margin Assessment in Oral and Oropharyngeal Cancer Using Label-Free Fluorescence Lifetime Imaging and Machine Learning. IEEE Trans. Biomed. Eng. 2021, 68, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Heger, Z.; Kominkova, M.; Cernei, N.; Krejcova, L.; Kopel, P.; Zitka, O.; Adam, V.; Kizek, R. Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology. Electrophoresis 2014, 35, 3290–3301. [Google Scholar] [CrossRef] [PubMed]
- Blacker, T.S.; Mann, Z.F.; Gale, J.E.; Ziegler, M.; Bain, A.J.; Szabadkai, G.; Duchen, M.R. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, W. Advanced Time-Correlated Single Photon. Counting Techniques, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Shin, D.; Xu, F.; Venkatraman, D.; Lussana, R.; Villa, F.; Zappa, F.; Goyal, V.K.; Wong, F.N.C.; Shapiro, J.H. Photon-efficient imaging with a single-photon camera. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rapp, J.; Goyal, V.K. A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging. IEEE Trans. Comput. Imaging 2017, 3, 445–459. [Google Scholar] [CrossRef]
- Zang, Z.; Xiao, D.; Li, D.D.U. Non-fusion time-resolved depth image reconstruction using a highly efficient neural network architecture. Opt. Express 2021, 29, 19278–19291. [Google Scholar] [CrossRef]
- Callenberg, C.; Lyons, A.; Brok, D.; Fatima, A.; Turpin, A.; Zickus, V.; Machesky, L.; Whitelaw, J.; Faccio, D.; Hullin, M.B. Super-resolution time-resolved imaging using computational sensor fusion. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Turgeman, L.; Fixler, D. Photon Efficiency Optimization in Time-Correlated Single Photon Counting Technique for Fluorescence Lifetime Imaging Systems. IEEE. Trans. Biomed. Eng. 2013, 60, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Li, D.D.U. Optimizing Laguerre expansion-based deconvolution methods for analyzing bi-exponential fluorescence lifetime images. Opt. Express 2016, 24, 13894–13905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.A.; Fang, Q.; Marcu, L. Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 835–845. [Google Scholar] [CrossRef]
- Pande, P.; Jo, J.A. Automated Analysis of Fluorescence Lifetime Imaging Microscopy (FLIM) Data Based on the Laguerre Deconvolution Method. IEEE. Trans. Biomed. Eng. 2011, 58, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chacko, J.V.; Sagar, A.K.; Eliceiri, K.W.; Yuan, M. Nonparametric empirical Bayesian framework for fluorescence-lifetime imaging microscopy. Biomed. Opt. Express 2019, 10, 5497–5517. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.U.; Arlt, J.; Tyndall, D.; Walker, R.; Richardson, J.; Stoppa, D.; Charbon, E.; Henderson, R.K. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm. J. Biomed. Opt. 2011, 16, 096012. [Google Scholar] [CrossRef] [Green Version]
- Li, D.D.U.; Yu, H.; Chen, Y. Fast bi-exponential fluorescence lifetime imaging analysis methods. Opt. Lett. 2015, 40, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Tyndall, D.; Rae, B.R.; Li, D.D.U.; Arlt, J.; Johnston, A.; Richardson, J.A.; Henderson, R.K. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 562–570. [Google Scholar] [CrossRef]
- Mai, H.; Poland, S.P.; Rocca, F.M.D.; Treacy, C.; Aluko, J.; Nedbal, J.; Erdogan, A.T.; Gyongy, I.; Walker, R.; Ameer-Beg, S.M.; et al. Flow cytometry visualization and real-time processing with a CMOS SPAD array and high-speed hardware implementation algorithm. Proc. SPIE 2020, 11243, 112430S. [Google Scholar]
- Xiao, D.; Zang, Z.; Sapermsap, N.; Wang, Q.; Xie, W.; Chen, Y.; Li, D.D.U. Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors. Biomed. Opt. Express 2021, 12, 3450–3462. [Google Scholar] [CrossRef]
- Li, D.D.U.; Arlt, L.; Richardson, J.; Walker, R.; Buts, A.; Stoppa, D.; Charbon, E.; Henderson, R. Real-time fluorescence lifetime imaging system with a 32 × 32 0.13μm CMOS low dark-count single-photon avalanche diode array. Opt. Express 2010, 18, 10257–10269. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Saleeb, R.; Dalgarno, P.; Li, D.D.U. Estimation of Fluorescence Lifetimes Via Rotational Invariance Techniques. IEEE. Trans. Biomed. Eng. 2016, 63, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Sapermsap, N.; Yu, J.; Tian, J.; Chen, Y.; Li, D.D.U. Histogram clustering for rapid time-domain fluorescence lifetime image analysis. Biomed. Opt. Express 2021, 12, 4293–4307. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T.; Yao, R.; Sinsuebphon, N.; Rudkouskaya, A.; Un, N.; Mazurkiewicz, J.; Barroso, M.; Yan, P.; Intes, X. Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 24019–24030. [Google Scholar] [CrossRef]
- Yao, R.; Ochoa, M.; Yan, P.; Intes, X. Net-FLICS: Fast quantitative wide-field fluorescence lifetime imaging with compressed sensing—A deep learning approach. Light Sci. 2019, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Chen, Y.; Li, D.D.U. One-Dimensional Deep Learning Architecture for Fast Fluorescence Lifetime Imaging. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–10. [Google Scholar] [CrossRef]
- Zickus, V.; Wu, M.; Morimoto, K.; Kapitany, V.; Fatima, A.; Turpin, A.; Insall, R.; Whitelaw, J.; Machesky, L.; Bruschini, C.; et al. Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Wu, G.; Nowotny, T.; Zhang, Y.; Yu, H.; Li, D.D.U. Artificial neural network approaches for fluorescence lifetime imaging techniques. Opt. Lett. 2016, 41, 2561–2564. [Google Scholar] [CrossRef] [Green Version]
- Kapitany, V.; Turpin, A.; Whitelaw, L.; McGhee, E.; Insall, R.; Machesky, L.; Faccio, D. Data fusion for high resolution fluorescence lifetime imaging using deep learning. Proc. Comput. Opt. Sens Imag. Opt. Soc. Am. 2020, CW1B-4. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. B 2021, 42, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chou, C.; Chen, Y.; Wang, S.; Wu, A. Robust and Lightweight Ensemble Extreme Learning Machine Engine Based on Eigenspace Domain for Compressed Learning. IEEE Trans. Circuits Syst I Regul Pap. 2019, 66, 4699–4712. [Google Scholar] [CrossRef]
- Fereidouni, F.; Gorpas, D.; Ma, D.; Fatakdawala, H.; Marcu, L. Rapid fluorescence lifetime estimation with modified phasor approach and Laguerre deconvolution: A comparative study. Methods Appl. Fluoresc. 2017, 5, 35003. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Natakorn, S.; Chen, Y.; Safar, M.; Cunningham, M.; Tian, J.; Li, D.D.U. Investigations on average fluorescence lifetimes for visualizing multi-exponential decays. Front. Phys. 2020, 8, 576862. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, Y.; Liao, S.; Nguyen, T.D.; Yang, J.; Kuo, Y.A.; Hong, S.; Liu, Y.L.; Rylander, H.G., III; Santacruz, S.R.; et al. Deep learning enables rapid and robust analysis of fluorescence lifetime imaging in photon-starved conditions. Commun. Biol. 2021, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Jameson, D.M.; Gratton, E.; Hall, R.D. The Measurement and Analysis of Heterogeneous Emissions by Multifrequency Phase and Modulation Fluorometry. Appl. Spectrosc. Rev. 1984, 20, 55–106. [Google Scholar] [CrossRef] [Green Version]
- Gerritsen, H.C.; Asselbergs, M.A.H.; Agronskaia, A.V.; Van Sark, W.G.J.H.M. Fluorescence lifetime imaging in scanning microscopes: Acquisition speed, photon economy and lifetime resolution. J. Microsc. 2002, 206, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Tsukada, M.; Kondo, M.; Matsutani, H. A Neural Network-Based On-Device Learning Anomaly Detector for Edge Devices. IEEE Trans. Comput. 2020, 69, 1027–1044. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Yu, J.; Wang, J.; Gu, P.; Birch, D.J.S.; Chen, Y. Hairpin DNA-functionalized gold nanorods for mRNA detection in homogenous solution. J. Biomed. Opt. 2016, 21, 97001. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.A.; Wang, J.; Jasinski, J.B.; Achilefu, S. Fluorescence manipulation by gold nanoparticles: From complete quenching to extensive enhancement. J. Nanobiotechnol. 2011, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Racknor, C.; Singh, M.R.; Zhang, Y.; Birch, D.J.; Chen, Y. Energy transfer between a biological labelling dye and gold nanorods. Methods Appl. Fluoresc. 2013, 2, 15002. [Google Scholar] [CrossRef] [Green Version]
- Jungemann, A.H.; Harimech, P.K.; Brown, T.; Kanaras, A.G. Goldnanoparticles and fluorescently-labelled DNA as a platform for biological sensing. Nanoscale 2013, 5, 9503–9510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, G.; Yu, J.; Birch, D.J.S.; Chen, Y. Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: Application to endocytosis study and RNA detection. Faraday Discuss. 2015, 178, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yu, J.; Birch, D.J.S.; Chen, Y. Gold nanorods for fluorescence lifetime imaging in biology. J. Biomed. Opt. 2010, 15, 20504. [Google Scholar] [CrossRef] [PubMed]
Algorithm | Mono-Exponential Decay Mode | Bi-Exponential Decay Mode |
---|---|---|
NLSF | 371.9 (s) | 670.9 (s) |
ELM | 6.2 | 6.5 |
CMM [17] | 1.9 | 1.9 (τI) |
BCMM [18] | - | 16.1 (τA) |
Algorithm | Training Parameters | Hidden Layer | Revolve Multi-Exp. Decays | Training Time |
---|---|---|---|---|
ELM | 205,600 | 1 | ✓ | 10.85 s |
FLI-NET [25] | 1,084,045 | 7 | ✓ | 4 h |
1-D CNN [27] | 48,675 | 7 | ✓ | 23 min |
MLP [28] | 3,750,205 | 3 | ✕ | 38 min |
MLP [29] | 149,252 | 2 | ✓ | 4 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Z.; Xiao, D.; Wang, Q.; Li, Z.; Xie, W.; Chen, Y.; Li, D.D.U. Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine. Sensors 2022, 22, 3758. https://doi.org/10.3390/s22103758
Zang Z, Xiao D, Wang Q, Li Z, Xie W, Chen Y, Li DDU. Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine. Sensors. 2022; 22(10):3758. https://doi.org/10.3390/s22103758
Chicago/Turabian StyleZang, Zhenya, Dong Xiao, Quan Wang, Zinuo Li, Wujun Xie, Yu Chen, and David Day Uei Li. 2022. "Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine" Sensors 22, no. 10: 3758. https://doi.org/10.3390/s22103758
APA StyleZang, Z., Xiao, D., Wang, Q., Li, Z., Xie, W., Chen, Y., & Li, D. D. U. (2022). Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine. Sensors, 22(10), 3758. https://doi.org/10.3390/s22103758