Identification of Corrosion Minerals Using Shortwave Infrared Hyperspectral Imaging
Abstract
:1. Introduction
2. Material and Methods
2.1. Corrosion Samples Preparation
2.2. FTIR Measurements
2.3. Semi-Quantification of Corrosion Products from FTIR
2.4. Hyperspectral Measurements
2.5. Hyperspectral Classification Algorithm
3. Results
3.1. FTIR Measurements of Corrosion Powders
3.2. Hyperspectral Imaging Samples
3.3. Comparison between FTIR and Hyperspectral Imaging (HSI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSI | Hyperspectral Imaging |
FTIR | Fourier Transform Infrared Spectroscopy |
GDP | Gross Domestic Product |
EIS | Electrochemical Impedance Spectroscopy |
LPR | Linear Polarization Resistance |
ER | Electrical Resistance |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
SEM-EDS | Scanning Electron Microscopy |
AUC | Area Under the Curve |
Norm Corr | Normalized Cross-Correlation |
References
- McCafferty, E. Introduction to Corrosion Science; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Koch, G. Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 3–30. [Google Scholar] [CrossRef]
- Hernández, H.H.; Reynoso, A.M.; González, J.C.; Morán, C.O.; Hernández, J.G.; Ruiz, A.M.; Cruz, R.O.; González, T. Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. In Electrochemical Impedance Spectroscopy; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Mansfeld, F. The Polarization Resistance Technique for Measuring Corrosion Currents. In Advances in Corrosion Science and Technology; Springer: Boston, MA, USA, 1976; Volume 6, pp. 163–262. [Google Scholar] [CrossRef]
- Sodsai, K.; Noipitak, M.; Sae-Tang, W. Detection of Corrosion under Coated Surface by Eddy Current Testing Method. In Proceedings of the 2019 7th International Electrical Engineering Congress (iEECON), Hua Hin, Thailand, 6–8 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Li, S.; Kim, Y.G.; Jung, S.; Song, H.S.; Lee, S.M. Application of steel thin film electrical resistance sensor for in situ corrosion monitoring. Sens. Actuators B Chem. 2007, 120, 368–377. [Google Scholar] [CrossRef]
- Jönsson, M.; Rendahl, B.; Annergren, I. The use of infrared thermography in the corrosion science area. Mater. Corros. 2010, 61, 961–965. [Google Scholar] [CrossRef]
- De Kerf, T.; Hasheminejad, N.; Blom, J.; Vanlanduit, S. Qualitative Comparison of 2D and 3D Atmospheric Corrosion Detection Methods. Materials 2021, 14, 3621. [Google Scholar] [CrossRef]
- Musić, S.; Gotić, M.; Popović, S. X-ray diffraction and Fourier transform-infrared analysis of the rust formed by corrosion of steel in aqueous solutions. J. Mater. Sci. 1993, 28, 5744–5752. [Google Scholar] [CrossRef]
- Kwon, S.K.; Suzuki, S.; Saito, M.; Waseda, Y. Atomic-scale structure and morphology of ferric oxyhydroxides formed by corrosion of iron in various aqueous media. Corros. Sci. 2006, 48, 3675–3691. [Google Scholar] [CrossRef]
- Balasubramaniam, R.; Ramesh Kumar, A.V. Characterization of Delhi iron pillar rust by X-ray diffraction, Fourier transform infrared spectroscopy and Mossbauer spectroscopy. Corros. Sci. 2000, 42, 2085–2101. [Google Scholar] [CrossRef]
- Santana Rodríguez, J.J.; Santana Hernández, F.J.; González González, J.E. XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain). Corros. Sci. 2002, 44, 2425–2438. [Google Scholar] [CrossRef]
- De la Fuente, D.; Díaz, I.; Simancas, J.; Chico, B.; Morcillo, M. Long-term atmospheric corrosion of mild steel. Corros. Sci. 2011, 53, 604–617. [Google Scholar] [CrossRef] [Green Version]
- López, D.; Schreiner, W.; de Sánchez, S.; Simison, S. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: An XPS and SEM characterization. Appl. Surf. Sci. 2004, 236, 77–97. [Google Scholar] [CrossRef]
- Zhang, F.D.; Liu, H.; Suebka, C.; Liu, Y.X.; Liu, Z.; Guo, W.; Cheng, Y.M.; Zhang, S.L.; Li, L. Corrosion behaviour of laser-cleaned AA7024 aluminium alloy. Appl. Surf. Sci. 2018, 435, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Eng, C.W.; Halada, G.P.; Francis, A.J.; Dodge, C.J. Spectroscopic study of decontaminated corroded carbon steel surfaces. Surf. Interface Anal. 2004, 36, 1516–1522. [Google Scholar] [CrossRef]
- Amin, M.A.; Abd El-Rehim, S.S.; El-Sherbini, E.E.; Bayoumi, R.S. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid. Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies. Electrochim. Acta 2007, 52, 3588–3600. [Google Scholar] [CrossRef]
- Veneranda, M.; Aramendia, J.; Bellot-Gurlet, L.; Colomban, P.; Castro, K.; Madariaga, J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018, 133, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Gotić, M.; Popović, S.; Musić, S. Formation and characterization of δ-FeOOH. Mater. Lett. 1994, 21, 289–295. [Google Scholar] [CrossRef]
- Namduri, H.; Nasrazadani, S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 2008, 50, 2493–2497. [Google Scholar] [CrossRef]
- Kumar, A.V.; Balasubramaniam, R. Corrosion product analysis of corrosion resistant ancient indian iron. Corros. Sci. 1998, 40, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Ramanaidou, E.; Wells, M.; Lau, I.; Laukamp, C. Characterization of Iron Ore by Visible and Infrared Reflectance and, Raman Spectroscopies; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 191–228. [Google Scholar] [CrossRef]
- Yamashita, M.; Miyuki, H.; Matsuda, Y.; Nagano, H.; Misawa, T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci. 1994, 36, 283–299. [Google Scholar] [CrossRef]
- Antunes, R.A.; Uchida Ichikawa, R.; Gallego Martinez, L.; Costa, I. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests. Int. J. Corros. 2014, 2014, 419570. [Google Scholar] [CrossRef]
- Dillmann, P.; Mazaudier, F.; Hœrlé, S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros. Sci. 2004, 46, 1401–1429. [Google Scholar] [CrossRef]
- Raman, A.; Kuban, B.; Razvan, A.; Group, M.; Rouge, B. The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products. Corrosion 1991, 32, 1295–1306. [Google Scholar] [CrossRef]
- Halford, B. Mapping corrosion with hyperspectral imaging. Chem. Eng. News 2018, 96, 10. [Google Scholar] [CrossRef]
- Antony, M.M.; Sandeep, C.S.S.; Matham, M.V. Monitoring system for corrosion in metal structures using a probe based hyperspectral imager. In Proceedings of the Seventh International Conference on Optical and Photonic Engineering (icOPEN 2019), Phuket, Thailand, 16–20 July 2019; Asundi, A., Fujigaki, M., Xie, H., Zhang, Q., Zhang, S., Zhu, J., Kemao, Q., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 11205, pp. 252–258. [Google Scholar] [CrossRef]
- BS EN ISO. 9227:2017 Corrosion Tests in Artificial Atmospheres; Salt Spray Tests; ISO: London, UK, 2017. [Google Scholar]
- Labbé, J.P.; Lédion, J.; Hui, F. Infrared spectrometry for solid phase analysis: Corrosion rusts. Corros. Sci. 2008, 50, 1228–1234. [Google Scholar] [CrossRef]
- Betancur, A.F.; Pérez, F.R.; Correa, M.d.M.; Barrero, C.A. Quantitative approach in iron oxides and oxihydroxides by vibrational analysis. Opt. Pura Apl. 2012, 45, 269–275. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; Technical report; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef]
Sample Nr | Duration (h) |
---|---|
1 | 0.5 |
2 | 1 |
3 | 4 |
4 | 8 |
5 | 24 |
6 | 48 |
7 | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Kerf, T.; Pipintakos, G.; Zahiri, Z.; Vanlanduit, S.; Scheunders, P. Identification of Corrosion Minerals Using Shortwave Infrared Hyperspectral Imaging. Sensors 2022, 22, 407. https://doi.org/10.3390/s22010407
De Kerf T, Pipintakos G, Zahiri Z, Vanlanduit S, Scheunders P. Identification of Corrosion Minerals Using Shortwave Infrared Hyperspectral Imaging. Sensors. 2022; 22(1):407. https://doi.org/10.3390/s22010407
Chicago/Turabian StyleDe Kerf, Thomas, Georgios Pipintakos, Zohreh Zahiri, Steve Vanlanduit, and Paul Scheunders. 2022. "Identification of Corrosion Minerals Using Shortwave Infrared Hyperspectral Imaging" Sensors 22, no. 1: 407. https://doi.org/10.3390/s22010407
APA StyleDe Kerf, T., Pipintakos, G., Zahiri, Z., Vanlanduit, S., & Scheunders, P. (2022). Identification of Corrosion Minerals Using Shortwave Infrared Hyperspectral Imaging. Sensors, 22(1), 407. https://doi.org/10.3390/s22010407